图1:这项研究的主要期望的图形摘要。基层生态系统(通过UAV pho-to-to-to-to-to to-to grammetric图像评估)具有复杂的垂直结构(从上图中的侧面和下部图中从上方看)和高环境异质性,预计将具有高的花朵多样性和高度的多样性和丰富性和丰富性(左图)。另一方面,HH低的草地地区可能具有较低的花朵多样性,蜜蜂的多样性和丰度(右图)。
2尼日利亚克罗斯河科技大学物理学系摘要 - 在这项研究中,描述了Quadcopter的开发。这表明利用构建软件用于构建发射器和接收器电路,并且该机柜是在本地生产的。由于经常发生的邪教战斗和流血事件,这已成为卡拉巴尔的克罗斯河科技大学校园中的问题,因此需要进行翻新。使用四轮驱动器,为该项目捕获了一些学生和一些热点位置的图像。这个四轮驱动器的组件包括一个小的F450,由玻璃纤维,四个Hubson X4拉丝DC电动机带有Walkera Ladybird Propellers,一个电子速度控制(ESC),一个NANO NANO NANO NRF24L01模块,一个惯性测量单元(IMU)MPU 6050,MPU 6050,lipo powder, 使用MATLAB模拟了从UAV收集的数据。 这些发现与印度电子与传播学院旁遮普邦的可爱专业大学相当可比。 在他们的研究中,创建了一个四肢驱动器,其明确目的是获取有关大气二氧化碳的信息。 我们的四轮飞机的飞行时间只有大约四分之三小时,它只能达到约150米的垂直高度,而他们的GPS模块可以正确稳定,可以根据其GPS模块来稳定位置,可以确定其位置,可以达到700米的垂直高度,并且飞行时间超过4小时。 索引术语 - 四轮驱动器,拉丝直流电动机,ESC,MPU 6050,Lipo电池,螺旋桨,无人机MATLAB。使用MATLAB模拟了从UAV收集的数据。这些发现与印度电子与传播学院旁遮普邦的可爱专业大学相当可比。在他们的研究中,创建了一个四肢驱动器,其明确目的是获取有关大气二氧化碳的信息。我们的四轮飞机的飞行时间只有大约四分之三小时,它只能达到约150米的垂直高度,而他们的GPS模块可以正确稳定,可以根据其GPS模块来稳定位置,可以确定其位置,可以达到700米的垂直高度,并且飞行时间超过4小时。索引术语 - 四轮驱动器,拉丝直流电动机,ESC,MPU 6050,Lipo电池,螺旋桨,无人机MATLAB。
让我们假设基准通过下点1。因此,点1点,z 1 = 0。作为点2位于0.3 m的垂直高度处的点1上方,我们在点2,z 2 = 0.3 m处有基准头。让点1和2的平均流量分别为V 1和V 2。由于管道的直径是恒定的,因此管道中心线上每个点的平均流速必须相同。即,点1处流量的平均速度,V 1 =点2,V 2处流量的平均流速。让点1和2的压力强度分别为p 1和p 2。在点1和2之间应用Bernoulli方程,我们有,
我们使用van der waals(vdw) - 纠正的密度函数理论和非平衡绿色的功能方法研究了DNA核苷酸酶[腺嘌呤(A),鸟嘌呤(g),胸腺嘧啶(T)和胞嘧啶(C)]与单层Ti 3 C 2 MXEN的相互作用。所有计算均针对石墨烯进行了基准测试。我们表明,取决于Ti 3 C 2表面上方的核碱基的初始垂直高度,可能是两个相互作用机制,即物理吸附和化学吸附。对于石墨烯,与石墨烯片上方核碱基的初始垂直高度无关,DNA核碱始终将物理呈现在石墨烯表面上。石墨烯的PBE + VDW结合能高(0.55-0.74 eV),并遵循G> a> t> C的顺序,吸附高度在3.16–3.22Å的范围内,表明强大的物理学。对于Ti 3 C 2,PBE + VDW结合能相对较弱(0.16-0.20 eV),并遵循A> g = T> C的阶,吸附高度在5.51–5.60Å的范围内,表明弱物理吸收。化学物质的结合能遵循g> a> t> c的顺序,这是相同的物理学顺序。结合能值(5.3-7.5 eV)表示非常强的化学吸附(约为物理吸附结合能的40倍)。此外,我们的频带结构和电子传输分析表明,对于物理吸附,频带结构没有显着变化,也没有调制状态的传输函数和设备密度。相对较弱的物理吸附和强烈的化学吸附表明,Ti 3 C 2可能无法使用物理吸附方法鉴定DNA核碱基。
摘要 - 在Mavlink协议上使用Python脚本,开发人员可以使用开源Dronekit Python软件框架来启用自动无人机操作。此框架提供了出色的灵活性和功能,可促进自动无人机控制。构建的四轮驱动器具有X配置,并使用带有一些修改的DJI F450帧。有趣的是,无人机在两侧都有铝制的腿,以帮助进行平稳起飞和着陆。框架为45厘米,对角线长度和30厘米的垂直高度。在15 x 18 x 12.5厘米的盒子中给出了额外的重量。本研究中使用的螺旋桨是一个基于9x6的碳模型。使用的X2216 1400KV无刷电动机来自Sunnysky,它带有30A等级的电子速度控制器(ESC)。4细胞14.8V锂聚合物(LI-PO)电池具有7200mAh容量为无人机供电。除此之外,无人机总共重1573克。结果是通过自我测量和飞行测量数据(FMU)获得的。进行了六次尝试,结果表明第二次飞行时间最长,高度最高。特别是,飞行测量单元(FMU)报告说,飞行持续了81秒,达到0.93米的高度。相反,自我测量数据报告说,飞行持续了85秒,高度达到1.5米。
为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。