摘要:塑料被称为顽固的材料,在自然界中很难降解,如果环境无法正确管理,则会导致其积累并威胁到环境。有关塑料降解的研究最近引起了很多关注。这项研究旨在确定从垃圾填埋场中塑料废物中分离出的真菌的多样性,并确定分离株的潜在塑料降解能力。从印度尼西亚的Medan Marelan的Terjun垃圾填埋场收集塑料废物样品。真菌直接在马铃薯葡萄糖琼脂培养基上分离,并在宏观上和显微镜上进行表征。塑料降解势。塑料板用于测试真菌的生物降解能力。24种不同的真菌形态型成功地从塑料废物中纯化,其中五种分离株显示出更好的生长。分子鉴定表明,五个电势分离株属于不同种类的紫solani(LDPE5),botryosphaeria laricina(lldpe10),曲霉菌(hdpe1),阿斯皮格鲁斯·弗拉维斯(Aspergillus flavus flavus flavus flavus(hdpe3)和植物(hdpe3)和植物(pp5)。生物降解测试表明,分离株LDPE5表现出最佳活性,45天后塑料板的重量减小了20.83%,然后是分离株LLDPE10,重量减轻了6.49%。扫描电子显微照片显示塑料片的退化片的表面变得粗糙而波浪状。傅立叶变换红外分析显示塑料片上新功能组的形成。然后,这表明垃圾填埋场中的真菌在生物降解过程中起着重要作用。关键字:多样性,真菌,身份证明,垃圾填埋,塑料退化简介
对塑料进行分类有助于生产出高质量的再生产品。制造商在每个容器的底部印上标准代码(#1-7)。仅回收 1 号和 2 号塑料,其“可倾倒”瓶颈小于瓶身。1 号聚对苯二甲酸乙二醇酯 PET、PETE 软饮料、水、苏打水瓶或 2 号高密度聚乙烯 HDPE 洗涤剂瓶。此外,还有 5 号聚丙烯 PP 瓶盖、吸管、酸奶杯。
摘要 由于大多数垃圾场缺乏渗滤液收集机制,废物被认为是土壤病原体的来源。本研究旨在检测垃圾场土壤中的微生物,并测试检测到的微生物对选定抗生素的敏感性。土壤样本是从尼日利亚奥约州奥格博莫索的五个独立垃圾场收集的。从收集的土壤样本中分离出八种细菌和八种真菌。使用传统的纸片扩散法对从收集的土壤样本中提取的细菌和真菌进行抗生素敏感性测试。结果表明,真菌分离株的微生物负荷在 1.7 到 4.8 x 10 5 CFU/g 之间变化,而细菌种群的微生物负荷在 1.0 到 8.0 x 10 5 CFU/g 之间变化。垃圾填埋场土壤样品中检测到的真菌分离物有链格孢菌、白色念珠菌、红酵母、尖镰孢菌、黄曲霉、塔玛曲霉、镰刀菌和指状青霉,细菌分离物有枯草芽孢杆菌、蜡状芽孢杆菌、表皮葡萄球菌、梭状芽孢杆菌、醋酸杆菌、大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。检测的细菌种类对头孢呋辛完全耐药,但对庆大霉素和氧氟沙星完全敏感。在不同剂量下,真菌分离株对灰黄霉素、伊曲康唑和酮康唑表现出耐药性和敏感性。根据这项研究的结果,庆大霉素和氧氟沙星等抗生素应被视为预防土壤传播的革兰氏阳性菌和革兰氏阴性菌感染的第一道防线 关键词:垃圾、垃圾场、土壤、微生物、抗生素耐药性。 引言在尼日利亚以及许多其他发展中国家,城市和农村地区都受到垃圾、塑料、瓶子、一次性杯子、废弃轮胎甚至人类和牲畜排泄物等废物的困扰。许多垃圾场,特别是在中低收入国家,缺乏适当的基础设施和资源来有效地管理废物,导致不受控制的倾倒和环境恶化(Mor 和 Ravindra,2023 年)。这些废物在视觉上不美观,会产生难看的景观,并散发出难闻的气味,特别是当它们的有机成分被腐烂细菌分解时(Gadallah,2016 年)。垃圾场的微生物群落通过有氧和厌氧分解、发酵和产甲烷等过程促进有机物的降解和转化(El-Saadony 等人,2023 年)。然而,
摘要 - 该研究重点是对现代电池技术中使用的不同电池管理系统(BMS)进行全面比较分析。其目标是完全检查和确定几个重要参数的性能差异。经验数据分析揭示了对关键因素的电池之间的实质性差异。电池规格显示出一系列容量,电池B003的最大容量为120 AH,电池B002的容量最低为85 AH。温度性能测试显示工作温度的显着差异,B003的温度最大为-20至50°C。注意到充电和排放率的显着差异,B004的率最高。此外,效率和衰老特性存在显着差异。具体来说,B005的效率最高,达到97%,而劣化率最低,仅为0.09%。这些数据突出了电池之间的显着变化,强调了对定制BMS技术的需求。比较研究提供了对电池行为复杂复杂性的关键见解,从而为创建有效的BMS设计提供了必不可少的基本信息。理解这些差异对于改善电池管理技术,确保各种应用程序中的有效电池操作以及指导电动汽车储能系统的未来进度,可再生能源和便携式设备至关重要。
智能垃圾箱可以提高监测浪费特性(例如体重,数量和处置时间)的透明度和准确性。此信息可以有助于执行减少废物的政策,包括付款方式(PAYT)系统。但是,公众对这项技术的反应仍然不确定。尽管日本在高废物分离依从性和收集率上的声誉,但它具有全球人均塑料和包装废物产生的最高速度之一。这项研究调查了1000名日本人对智能垃圾箱特征的看法以及鼓励减少废物的潜力。多个对应分析(MCA)用于探索受访者的社会属性及其回应之间的关系。调查结果表明,年轻的受访者的反应略高(超过10-29岁的年龄占85%,而60岁及60岁以上的人中的75%)则赞成智能垃圾箱技术功能,例如未完成的废物拾取和自动化的废物分离。另一方面,即使从未首先从事废物分离和清洁的人引入了智能垃圾箱辅助Payt,也有强烈的联合国愿意(0.57计数比率)减少塑料废物。最后,关于减少塑料废物的策略的一个开放式问题导致了大部分思维方式改变思想(占女性的24.8%)和技术创新提案(占男性受访者的24%)。尽管正在进行智能原型的开发,但行为改变策略以促进减少废物的意愿,必须与技术干预一起进行。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月20日发布。 https://doi.org/10.1101/2023.11.21.568055 doi:Biorxiv Preprint
c rungta药物研究学院R1BHILAI *通讯作者:Parag Jain(副教授)rungta药学学院药学系R1 1。引言由于其耐用性,稳定性,防水性,多才多艺的自然成本最低的成本使塑料成为其他可用材料的替代品(Priya等人2021)。随着时间的流逝,它成为我们生活的重要组成部分,并满足了高需求。长链聚合物分子的存在使其分解过程较慢(Bakht等2020)。塑料的降解会产生微型塑料(粒径<5 mm)负责过度毒理学效应(Chen等,2020a; 2020b)。垃圾填埋场,焚化和回收法也不适合由于成本高以及释放温室气体(Hou等人2022; Gao&Sun 2021)。生物降解,即使用微生物的降解是一种环境友好的友好型塑料,通过各种生物学过程,塑料与较短链的Co 2&h 2 O Orsubstances降解:生物端工,生物临界,生物侵蚀和同化,而无需释放任何副产品(2021; Kim et al.2017)。聚合物链在生物降解中被生物群体分解为低聚物和单体(Atanasovaet al.2021)。Micro-Ornermism是破坏塑料的惰性性质,使其具有抵抗力,使其具有脱脂性(Mohanan et al an al an al an al and al。此外,可生物降解的塑料可能有助于制造有用的代谢产物(单体和低聚物)(Mir等人,2017年; Tokiwa等人。2018; Bombelli等。2017)。微生物在聚合链中将碳交换为微分子或二氧化碳和二氧化碳和水,从而有助于土壤生育能力,塑料积累的降低和废物管理成本。2009)。目前将更多优先级用于分离塑料受污染的土壤的有效塑料降解微生物(Muhonja等人。目前的研究旨在将塑料降解细菌与倾倒部位分离并表征细菌。
图2核糖开关机制,功能和保护。(a)核糖开关是高度结构化的RNA基序,这些RNA基序嵌入了许多细菌mRNA的5'非翻译区域中,在那里它们可以在共同转文时增强或抑制基因表达,以结合小分子或元素离子离子配体。这样的机制涉及RNA聚合酶(RNAP)对转录产量的调节,而其他机制则更直接地改变了mRNA转化为蛋白质的可能性。(b)上游适体区域结合配体,渲染形成结合口袋(黄色框)的核心段以及侧翼建筑片段(蓝色框),高度保守。[112,113]相比,下游表达平台显示出较少的保护,最可能是因为它在功能上与许多对特定细菌具有特殊性的蛋白质效应子相互作用。使用biorender.com创建。
项目亮点: • WM 的 RNG 设施将使文图拉县走在减排技术的前沿 • WM 为 RNG 设施投资 1 亿美元 • 每年减少 10 万吨温室气体排放 • 回收的天然气将为超过 60,000 户家庭提供能源或为大约 2,000 辆重型卡车提供能源。 • 预计该设施将于 2025 年投入运营,直至场地关闭(2050 年后)
垃圾填埋场是发展中国家一种廉价的固体废物管理方式。大多数垃圾填埋场都是不卫生的,作为露天垃圾倾倒场,对公众和环境健康构成威胁。因此,深入了解垃圾填埋场的化学和微生物学对于制定正确的垃圾填埋场管理政策至关重要。在当前的研究中,我们使用基于培养和不依赖培养的分子方法研究了三个印度垃圾填埋场的化学和微生物学。我们的数据表明,垃圾填埋场的性质在化学、污染物和病原体方面因地点而异。我们还使用优化的培养基富集和培养了三种产甲烷菌,并使用宏基因组组装的基因组方法从富集的微生物组中构建了两个高质量的草图基因组。一个草图基因组的系统基因组学研究显示与 Methanomassiliicoccaceae 成员的序列相似性最高,为 93%,并且始终富含 Acholoplasma 和 Anaerohalosphaera lusitana。尽管我们付出了所有努力,但我们并没有在纯培养中将其分离出来,并假设对于某些尚未培养的产甲烷菌的培养,其他生物的存在起着重要作用,必须辨别它们的互养相互作用才能在未来成功培养。氨基酸降解生物的共培养表明,它们的共培养有助于促进产甲烷菌的生长。此外,我们的数据表明,垃圾填埋场渗滤液含有大量污染物,在排放到自然界或用于灌溉或生物肥料之前必须进行处理。