2002 年,法戈垃圾填埋场开始变垃圾为宝,安装了一套由 20 口井组成的主动气体收集系统,其抽气能力约为每分钟 600 立方英尺 (cfm)。这些井直接钻入掩埋的废物中,通过管道相互连接,形成一个井场。这些井利用真空压力将气体从掩埋的废物中抽出,以免其有机会逸入大气。一旦气体被捕获,它们就会被转移到中央鼓风机站,在那里它们开始新的生命,成为发电的有用燃料来源。自 2002 年以来,该垃圾填埋场经历了四个扩建阶段。目前的井场由 62 口气井组成,总抽气能力约为 1,300 cfm。
谁来监管太空垃圾清理? Mahulena Hofmann * 摘要 随着大型卫星星座的出现,保护太空环境已成为当务之急。许多参与者正在开发工具,以引导太空运营商采取环保行为。其中,一些国家已将环保措施纳入其太空立法。本文概述了这些努力,重点关注制定这些措施的参与者的特点:包括欧空局在内的国际组织、各国,以及卫星运营商组织或标准组织等非国家参与者。这一发展引发了一个问题:欧盟是否也应该积极主动地开发自己的垃圾清理系统。分析得出的结论是,目前,对空间垃圾清理的有效监管较少由正式的规范制定机构进行,而是由各种非国家实体根据实际做法采用标准进行。 关键词:环境、可持续性、空间垃圾、标准化。
项目描述 Waiouru(毛利语,意为“西部之河”)是新西兰北岛的一个中部城镇。该镇享有西北 25 公里处鲁阿佩胡山东坡的壮丽景色,自第二次世界大战以来一直是山区和高山沙漠条件下的军事训练基地。该基地有一个即将退役的垃圾填埋场,当地专业设计顾问 Tonkin & Taylor Ltd 联系了 ABG 以协助进行封盖设计。 挑战 传统的封盖方法包括 600 毫米厚的压实粘土衬垫。大量低渗透性粘土需要采石并运输到现场,会产生大量碳足迹,由于该地区的地质状况,没有可用的本地来源。粘土方案还需要额外的环境批准才能打开粘土借料区,并且容易发生干燥开裂,从而导致水不受控制地渗透和垃圾填埋场产生渗滤液。客户寻求一种更加环保的选择来满足这个独特生态区域的可持续土地管理战略。
随着全球电子垃圾以惊人的速度增长,传统的回收方法由于使用能源密集型工艺和危险化学品,对健康和生态构成了重大风险。利用微生物从垃圾中提取有价值的金属,即生物采矿,是一种有前途的传统电子垃圾管理方法的替代方案。本研究严格审查了生物采矿作为电子垃圾回收可持续替代方案的可行性。通过将生物采矿与传统方法进行比较,本研究探讨了其环境效益、减少化学品使用和降低能耗,以及其局限性、较慢的回收率和复杂的微生物过程。研究表明,生物采矿在回收金和铜等有价值的金属时效率最高,但在回收低品位材料时效率较低。此外,研究还讨论了在哪些条件下生物采矿可以成为一种可靠的解决方案,并指出了微生物优化和适当的经济和环境条件的重要性。最后,提出了未来研究的重要领域,例如开发更高效的生物采矿工艺、进行长期环境影响评估和生命周期分析,以评估生物采矿作为电子垃圾管理途径的可持续性。
人工智能驱动的检查利用人工智能来改善机构(包括学校、医院、工厂和政府机构)监督合规性、监控流程和维持质量标准的方式。通过应用人工智能技术,可以更快地进行检查,并且更加准确和一致。人工智能系统从各种来源(例如摄像头和传感器)收集数据,然后使用机器学习算法来分析这些信息、识别模式并检测潜在问题。这些系统可以自动生成综合报告,强调关键发现并建议改进领域,从而简化流程并确保一致性。人工智能的一个主要优势是它能够在潜在问题(例如设备故障或安全隐患)发生之前对其进行预测。这种预测能力使机构能够实施预防措施并就政策和资源分配做出基于数据的决策。此外,人工智能支持实时监控,使机构能够迅速应对任何新出现的问题。总之,人工智能驱动的检查提高了效率、准确性和可扩展性,同时通过及早发现问题来帮助降低成本。这些系统在许多行业中都有广泛的应用,但也带来了挑战,例如数据隐私问题和集成的复杂性。随着人工智能技术的进步,这些检查系统预计将变得越来越普遍,从而大大改善机构监督和管理。
教授兼 ECE 主任,KSIT,班加罗尔,印度 5 摘要:对可持续且经济高效的能源解决方案的需求日益增长,这导致了利用废物作为资源的创新方法。本文探讨了一种结合自动废物分类、焚烧和热电能转换发电的集成系统。使用传感器、Arduino 微控制器和伺服电机,废物会自动分为干湿类别,确保高效处理。它还调查了通过基于焚烧的系统从干废物中发电的过程。该研究的重点是设计和实施一个系统,该系统采用 TEC 12706 Peltier 模块将废物燃烧过程中产生的热能转化为可用的电能。所提出的方法通过利用焚烧干废物的热能同时最大限度地减少环境影响来解决废物管理中的关键挑战。该过程涉及干废物的系统收集、净化和燃烧,并经过优化以实现最大的热电转换效率。通过回顾现有技术和方法,本文重点介绍了 TEC 12706 珀尔帖模块在小规模、分散式能源生产中的潜力。研究结果和发现有望促进开发经济高效、环保的能源解决方案,促进可持续的废物转化为能源的实践。关键词:自动分类、焚烧、TEC 12706 珀尔帖模块、废物转化为能源。
SECCRA 选择 Waga Energy 在宾夕法尼亚州生产 RNG 费城,2024 年 12 月 18 日——切斯特县东南垃圾管理局 (SECCRA) 选择 Waga Energy 在位于宾夕法尼亚州西格罗夫的 SECCRA 社区垃圾填埋场生产可再生天然气 (RNG)。SECCRA 是负责切斯特县南部废物管理的市政当局,而 Waga Energy (EPA:WAGA) 是从垃圾填埋场生产可再生天然气 (RNG) 的全球专家,双方签署了一项为期 20 年的协议,在宾夕法尼亚州西格罗夫的 SECCRA 社区垃圾填埋场生产 RNG。根据该协议,Waga Energy 将在该现场使用其专利的 WAGABOX® 技术资助、建造、拥有和运营 RNG 生产设施。该 WAGABOX® 装置是切斯特县的第二套装置,彰显了 Waga Energy 对社区 RNG 的承诺。Landcaster 垃圾填埋场正在建造一套 WAGABOX® 装置。 WAGABOX® 设施于 2026 年投入使用后,每年将向当地天然气网络注入 229,000 MMBtu(67 GWh)的 RNG。这相当于每年为大约 4,300 户家庭供暖。生产的 RNG 每年将抵消约 15,000 吨二氧化碳当量排放量1。RNG 是能源转型的重要支柱,是一种本地可再生能源,可替代交通、工业和供暖领域的化石燃料。SECCRA 为切斯特县南部的 24 个行政区和乡镇提供服务。SECCRA 社区垃圾填埋场收集一个由 105,000 人组成的社区的垃圾,每年接受近 150,000 吨垃圾。WAGABOX® RNG 设施的实施进一步体现了 SECCRA 对垃圾填埋场服务社区的长期承诺。经过 15 年的发展,Waga Energy 的专利 WAGABOX® 技术将膜过滤与低温蒸馏相结合,彻底改变了垃圾填埋气的升级。无论垃圾填埋气的流速和成分如何变化,它都能确保生产管道质量的 RNG,从而最大限度地提高垃圾填埋场的可再生能源产量。SECCRA 社区垃圾填埋场 WAGABOX® 设施将是 Waga Energy 在宾夕法尼亚州的第三个项目。SECCRA 总经理 Scott Mengle 表示:“SECCRA 长期以来一直是垃圾填埋气发电计划的先驱,并因将垃圾填埋气转化为电能而于 2007 年获得了美国环保署颁发的年度项目奖。”SECCRA 董事会主席 Andrew Mazzeo 表示:“与 Waga Energy 达成的这项新协议代表了我们对可持续发展的承诺的新篇章。通过升级垃圾填埋场
NAKAMURA Ryo (JAXA) 中村涼(JAXA) 地球轨道上的空间垃圾逐年稳步增加,预计未来将对人类的太空活动构成重大挑战。为了解决这个日益严重的问题,三种关键方法至关重要:“观察和预测”、“减轻垃圾产生”和“清除”。日本宇宙航空研究开发机构 (JAXA) 致力于与这些方法相关的研究和开发工作,同时也通过机构间空间垃圾协调委员会 (IADC) 和联合国和平利用外层空间委员会 (COPUOS) 等组织积极为国际规则制定做出贡献并紧跟全球趋势。此外,JAXA 正在努力制定自己的空间垃圾管理标准。本演讲将概述 JAXA 正在进行的与空间碎片相关的活动,特别关注最近的研究和开发活动。ると予想されています。このスペースデブ里问题には「観测・予测」「発生低减」「去除」の三つの対策が重要です。JAXA のスペーデブ里关连の活动はこれらに纽づく研究开発活动に加え、IADC、COPUOS等を通した国际动向の谜・ルール制定への贡献やデブuriに关するJAXA基准の制定记などを行っています。 本発表では、上のsuペーsuデブuriに关连したJAXAの活动概要を绍介するとともに、特に最近の研究 开発活动についてご报告します。