摘要在YouTube等平台上产生的用户生成内容的指数增长导致垃圾邮件评论的增加,这对用户体验和内容审核的工作产生了负面影响。本研究介绍了各种机器学习模型的全面比较研究,用于检测YouTube上的垃圾评论。该研究评估了一系列传统和集合模型,包括线性支持向量分类器(LinearsVC),Randomforest,LightGBM,XGBoost和fotingClassifier,目的是识别自动垃圾邮件检测的最有效方法。数据集由标记的YouTube注释组成,并使用术语频率插图频率(TF-IDF)矢量化进行文本预处理。使用分层的10倍交叉验证对每个模型进行训练和评估,以确保鲁棒性和概括性。LinearsVC优于所有其他模型,其精度为95.33%,F1得分为95.32%。该模型表现出优异的精度(95.46%)和召回(95.33%),使其在区分垃圾邮件和合法评论方面非常有效。结果突出了线性垃圾邮件检测系统的线性潜力,在准确性和计算效率之间提供了可靠的平衡。此外,研究表明,尽管Random Forest和投票classifier之类的集合模型表现良好,但在这种情况下它们并没有超过更简单的线性模型。未来的工作将探索深度学习技术的结合,例如卷积神经网络(CNN)和经常性神经网络(RNN),以捕获更复杂的模式并进一步提高YouTube等社交媒体平台上的垃圾邮件检测准确性。
尽管不具有法律约束力,但国际标准化组织制定的标准得到了广泛认可,并为众多领域提供了共同框架。包括空间垃圾减缓。最值得注意的是,2023 年 5 月更新的顶级标准 ISO 24113 概述了涵盖定义、保护区、技术规范和规划需求的要求,全面概述了该问题以及合规所需的行动。此外,ISO 还推出了空间安全和可持续性标准,例如用于会合数据消息的 19389(2014 年)、用于空间系统的 23312(2022 年)和用于会合、近距操作和在轨服务的 24330(2022 年)。有关避免碰撞、空间交通协调和航天器星座设计的其他标准正在制定中。
• 播客将根据创意的原创性、科学内容、概念的清晰度和表达方式以及辅助工具的使用情况进行评判。 • 提交视频即表示您承诺拥有视频中所有材料的所有权利,包括音乐、图像、脚本以及包含或描绘的所有人物、地点或组织的权利。SPACE India 将拥有非商业用途的发行权,视频制作者将拥有公共或商业用途的共同发行权。您还同意允许 SPACE India 使用您的姓名、身份和肖像以任何方式使用、推广或宣传您的视频,不受限制,也无需进一步补偿。 • 本次比赛不以任何方式由 Facebook、Instagram 或 Twitter 赞助、支持或管理,也不与其有任何关联。提交视频即表示您同意免除 Facebook、Instagram 或 Twitter 与本次比赛相关的任何和所有责任。
用户应联系他们从许多商店提供通过制造商提供回收计划的商店。此外,个人可以注册Terracycle的免费vape墨盒回收计划。
该计划将适用于一次性聚对苯二甲酸乙二醇酯 (PET) 塑料瓶和钢/铝罐(仅限于 50 毫升至 3 升之间的瓶子/罐)。有迹象表明,DEFRA 正在考虑每个容器/物品约 20 便士的押金价值。除了提高这些物品的回收率外,主要目标是减少垃圾,并对抗塑料污染的影响。就利兹的影响而言,我们需要考虑绿色垃圾箱中塑料瓶和饮料罐的减少和对收集的影响,以及回收材料分类合同和未来 EPR 支付的净成本。DEFRA 宣布进一步推迟该计划,将计划实施推迟到 2027 年 10 月。14. 如上述更新所示,时间表和未来实施仍然存在不确定性
本研究通过开发一种混合垃圾邮件过滤模型,填补了理论和应用方面的空白。该模型将随机森林分类器的稳健性与神经网络的复杂模式识别能力以及朴素贝叶斯的概率推理相结合,以增强数据安全和网络分析能力。我们重申垃圾邮件过滤在应对网络安全挑战中的重要性,并强调现有技术的优势和局限性;并论证了强大的垃圾邮件过滤系统在应对日益演变的垃圾邮件威胁方面的重要性。在初步评估的六种预测方法中,随机森林 (RF) 分类器被评为最有效的模型,其最高准确率达到 95.87%,最低误分类错误率仅为 4.13%,并且在识别真阳性和真阴性方面表现均衡。随机森林、神经网络和朴素贝叶斯算法的混合使用进一步将准确率提升至 97.22%。关键词:随机森林分类器、垃圾邮件过滤、支持向量机、决策树、朴素贝叶斯、神经网络、网络分析
在海洋环境中以人为垃圾的形式进行污染是我们时代的巨大挑战之一,不仅对淡水和海洋生态系统,而且对城市环境和人类健康也带来了可怕的后果[10]。特别是,将持久垃圾(例如塑料)释放到海洋中被认为是全球关注的问题。由于它们的寿命很长,这些类型的垃圾随着时间的推移在海洋中积累了,导致了海洋生物的摄入和纠缠等问题[23]。一旦从多个来源(海洋和陆基)引入海洋环境,塑料可以通过表面电流和风转换,被海岸线捕获或降解为微塑料[3]。这些威胁有可能破坏生态系统的平衡,从而导致昂贵的控制权,清理和负面的经济后果。
由于“天体力学和人类对太空的使用”14 在每个轨道带上都不同,航天员在识别威胁、管理风险和思考解决方案时必须采取细致入微的方法。15 例如,他们必须在较低的轨道带紧急采取行动,即使这样做会更加困难。在较低的轨道带,资产在地球上移动得更快,机动更频繁,而且离其他物体更近。除了增加较低轨道带的不确定性、风险和后果之外,16 这还可能阻碍和复杂化人类更普遍地进入太空,因为较低的轨道带本质上是发射定位资产的集结区,也是人类对外太空进行地球观测的屏幕(现在被碎片和卫星光污染扭曲)。其他轨道带,或者说轨道或其中的太空通道,也挤满了活跃的资产,也可能堆满碎片。17
本研究旨在调查和鉴定与哈科特港 Rumuolumeni 的 Eagle 水泥垃圾场相关的真菌。在两个垃圾场的不同地点采集土壤样本。将土壤样本放入不同的干净尼龙袋中,并在无菌和新鲜制备的平板计数琼脂 (PCA) 上进行培养。所有技术均按照制造商说明的标准实验室条件进行。接种重复三次,并记录为土壤样本中的平均总可行真菌数。从 Eagle 水泥垃圾场分离、表征和鉴定了四 (4) 种真菌。在调查期间分离的所有生物中,鉴定的真菌有黄曲霉、黑曲霉、青霉菌和镰刀菌。黄曲霉菌种的出现率最高,为 36.3%,青霉菌和镰刀菌种的出现率最低(18.2%)。共记录到真菌数量 9.89 × 10 7 ,平均数量为 3.29 × 10 7 。