摘要:光合生物将离散的集光复合物组织成大规模网络,以促进高效的光收集和利用。受大自然的启发,本文使用合成的 DNA 模板引导染料聚集体与菁染料 K21 形成离散的分支光子复合物和二维 (2D) 激子网络。DNA 模板的范围从四臂 DNA 瓦片(每臂约 10 纳米)到具有不同几何形状和不同尺寸的二维线框 DNA 折纸纳米结构,最大可达 100 × 100 nm 2 。这些 DNA 模板染料聚集体表现出强耦合的光谱特征和离域激子特性,从而实现高效的光子收集和能量传输。与在单个 DNA 瓦片上模板化的离散分支光子系统相比,互连的激子网络的能量传输效率提高了约 2 倍。这种自下而上的组装策略为创建具有复杂几何形状和工程能量路径的二维激子系统铺平了道路。
引言三角运算作为基本数学运算家族之一,在通信与信号处理领域占有核心地位[1]。传统的用于执行三角运算的器件,如现场可编程门阵列(FPGA)[2]和数字信号处理器(DSP)[3],通常基于电子元件,这导致速度低、功耗高,并且复杂性不可避免[4,5]。如今,呈指数级增长的通信数据和信息需要实时处理和存储,这对传统的基于电子的运算提出了严峻的挑战。因此,迫切需要一种颠覆性的数值三角运算解决方案。在过去的几年中,光学计算的出现为突破传统信号处理器的若干限制提供了可能性[6]。这种基于电磁波的计算策略避免了模数转换,允许超高速大规模并行运算[7],这已被证明在时间积分和微分[8,9]、希尔伯特变换[10]、空间微分器[11]、逻辑门[12]和任意波形生成[13]中具有巨大潜力。
本文介绍了 408 nm – 941 nm 范围内高灵敏度栅/体连接 (GBT) 金属氧化物半导体场效应晶体管 (MOSFET) 型光电探测器的光电流特性。高灵敏度对于光电探测器非常重要,它用于多种科学和工业应用。由于其固有的放大特性,GBT MOSFET 型光电探测器表现出高灵敏度。所提出的 GBT MOSFET 型光电探测器是通过标准 0.18 µm 互补金属氧化物半导体 (CMOS) 工艺设计和制造的,并分析了其特性。分析了光电探测器的宽长比 (W/L)、偏置电压和入射光波长。实验证实,所提出的 GBT MOSFET 型光电探测器在 408 nm – 941 nm 范围内的灵敏度比相同面积的 PN 结光电二极管高 100 倍以上。
光源不仅能推动重大科技进步,还在行业转化研究和创新中发挥着重要作用。光子学领导小组 iii 最近发布的一份报告指出,光子学对英国社会和经济的价值与日俱增。制造或提供基于光子学技术服务的公司每年生产的商品和服务价值约为 135 亿英镑,为英国经济创造了 53 亿英镑的总增加值。英国光子学产业的持续增长反映了光在当前和下一代产品的开发和制造中所起的关键作用。虽然光子学产业比本战略文件所涵盖的光源类型要广泛得多,但大规模光源实验所取得的物理、化学和生物基础进步为光子学公司乃至其他技术产业所利用的许多技术发展提供了巨大的推动力。
摘要:人们普遍认为,将可再生能源纳入现有电网是实现可持续发电的出路。目前,随着光伏价格的下降,许多国家已开始将光伏系统接入电网,从而导致可再生电力生产的渗透率急剧上升。由于可再生能源发电性质的变化,这将给电网的负载模式和常规发电系统的爬坡要求带来重大变化。这种重大变化影响了电网频率的稳定性,因为系统运营商更难维持发电和负载之间的平衡。此外,由于光伏系统为了遵守电网常规发电系统的约束而削减了发电量,这种重大变化影响了传统电网的光伏系统潜在承载能力。本文在提高大型光伏系统发电渗透率的情况下评估了净负荷、电网频率稳定性和电网潜在承载能力。结果表明,随着光伏系统渗透率的提高,电网运营商将面临越来越多变的净负荷模式和更陡峭的斜坡事件。此外,结果还表明,随着光伏系统渗透率的提高,需要针对每个电网限制制定灵活措施。
人脑由 100 × 10 9 个神经元组成,它们相互连接,充当人体的控制系统。对人脑的研究从公元前一世纪就一直在进行。1最近,这引发了脑机接口 (BCI) 的研究。2 BCI 设计需要分析从头皮记录下来的脑电活动作为脑电图 (EEG) 活动。EEG 信号根据 EEG 电极位置和人体动作而变化。BCI 使用这些变化作为控制设备的特征或命令。传统医疗级 EEG 系统如 NeuroScan TM 、BioSemi TM 和 g.Tec TM 可在医院和医疗诊所找到,用于诊断一系列疾病,如癫痫、睡眠障碍和其他脑相关疾病。3,4 这些 EEG 系统由于其高质量和可靠性已经使用了很多年。最近,一些廉价的消费级无线脑电图系统已在家庭中使用,用于冥想和简单的脑电图诊断(NeuroSky TM 、Emobio TM 、Muse TM 、Emotiv TM 等)。与传统脑电图系统相比,这些无线脑电图系统不仅更便宜,而且更简单、更快捷
吹扫气体的选择也是此解决方案的重要组成部分。根据与领先的曝光工具 OEM 合作保护扫描仪光学元件的经验,Entegris 已测试并确定了一种行之有效的吹扫气体源,以最大限度地降低和消除光刻工艺的风险。吹扫气体系统已获批准,可与这些相同曝光工具中的透镜组件一起使用。此外,高光学纯度对光罩的数值孔径没有影响。这种吹扫气体源对操作员也更安全,并提供最低的运营成本。Clarilite 系统使用的气体是 Entegris 的极度洁净干燥空气 (XCDA ® )。
抽象的非线性分子与光场相互作用产生许多有趣的光学现象,并从新的颜色产生到生物医学成像和传感。这些相互作用的非线性横截面很低,因此对于纳米级使用率,需要增强光场。在这里,我们证明了两个光子吸收可以通过夹在金纳米颗粒和金膜之间的含发射器的单个等离子纳米腔内的𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏可以增强。这种增强是局限于纳米类体系中的高场增强的结果,从而增强了与发射器的非线性相互作用。我们进一步研究了确定增强的参数,例如腔光谱位置和激发波长。此外,percell效应将发射寿命从520 ns大幅降低到<200 ps,从而将无效的磷光发射器转变为超快的光源。我们的结果提供了对增强的两光子激发发射的理解,从而可以优化纳米级的有效的非线性光肌相互作用。
摘要本文提出了新开发的先进的超薄光敏电介电膜(PDM),其高分辨率,低CTE和低剩余应力,用于下一代高密度重新分布层(RDL),2.5D Interposer,以及高密度的风扇输出包装应用程序。对于高密度RDL,光敏电介质材料需要具有低CTE才能达到高包装可靠性。材料的CTE为30-35ppm /k。在保持低CTE时,我们成功地证明了5UM厚度中3UM的最小微型视野直径。PDM的固化温度为180 0 C x 60分钟。比目前在行业中使用的大多数高级介电材料低。低温固化过程会导致低压力。,我们通过4英寸晶圆的经经测量测量结果计算了固化的PDM中的残余应力。作为PDM材料在固化过程中的另一个好处,可以将PDM固化在空气烤箱中。大多数先进的照片介电材料都需要在N2烤箱中固化,这是由于防止材料氧化的。我们通过使用半添加过程(SAP)和溅射的Ti/Cu种子层展示了2UM线的铜痕迹,并在PDM上间隔。由于由于低温固化而引起的低CTE和低残余应力,它通过了温度周期测试(1,000个周期),其雏菊链结构在结构中具有400个VIA。可以得出结论,新开发的PDM是一种有前途的介电材料,用于2.5D interposers和Fan-Out Wafer级级别的应用程序,用于高度可靠的高密度重新分布层(RDL)。