Mostafa al-Nagar©照片礼貌/Belady - 人类岛屿,美国埃及-07 - 莫斯塔法·纳加尔(Mostafa al-Nagar)指控侵犯人权行为强制消失威胁,威胁行为,恐吓行为侵犯观点自由和表达自由,侵犯了失败的侵害性免疫侵害性侵害性据称,该案莫斯塔法·纳加尔先生的摘要在2018年9月27日在阿斯万的南部省失踪。他的家人和律师无法与他联系或获得有关其下落的信息。他们担心他可能已被任意逮捕并持有Incommunicado。申诉人声称,阿尔纳加尔先生是2011年革命的象征,也是埃及政府在议会期间的声音批评者,该任期持续了2012年1月23日至6月14日,当时埃及议会根据Sipreme Contitity contitutional contitityal Courtital裁决而解散。2017年12月,他在2012年的议会中发表的演讲中因“侮辱司法机构”而被判处三年徒刑。在2017年12月30日的裁决中,开罗刑事法院发现,al-Nagar先生在2012年和2013年犯了两次罪行,其中首次犯有侮辱和诽谤
3 每日新闻埃及,数字经济是可持续发展的火车头,2022 年,https://dailynewsegypt.com/2022/06/14/digital-economy-is-the-locomotive-of- sustainable-development/ 4 埃及 - 国家商业指南。可访问以下网址获取:https://www.trade.gov/country-commercial-guides/egypt-information-and-communications-technology-and-digital-economy 5 世界银行,《数字化对中东和北非的好处——数字技术的采用如何加速增长和创造就业》,2021 年,可访问以下网址获取:https://openknowledge.worldbank.org/bitstream/handle/10986/37058/9781464816635.pdf?sequence=10&isAllowed=y 6 Kouadri, N 和 Cherif, A. 2020 年。《数字鸿沟对中东和北非国家经济增长的影响:来自 2000-2018 年面板 ARDL 模型的证据》。网址:https://www.researchgate.net/publication/351516650_IMPACT_OF_THE_DIGITAL_DIVIDE_ON_ECONOMIC_GROWTH_IN_MENA_COUNTRIES_EVIDENCE_FROM_PANEL_ARDL_MODELS_2000-2018
本期的第一章是由Sara Alnashar(MTI高级经济学家),Fatma El-Ashmawy(MTI顾问)和Jala Youssef(MTI顾问)编写的。第二章以“数字政府转型”为重点主题的第二章由萨拉·阿尔纳沙(Sara Alnashar),Yosra Bedair(Yosra Bedair)(顾问,治理和MTI顾问)和Fatma El-Ashmawy和Fatma El-Ashmawy编写,并借鉴了由世界银行团队编写的数字经济评估(DECA)报告(DECA),包括Eric Digital Develient,Nightical Dectording,Newertial Sceert,MAHA SUSSEIN,MAHA SUSTERIND,MIDAHAS SASSEIN,包括Eric Decortion finalist,MAHA SUSTERING,MIDAHAS AHAS AUSHAS,公司-IFC),Carlo Maria Rossotto(全球基础架构首席投资官),Tim Kelly(DD的主要数字开发专家,DD),Jerome Bezzina(高级数字发展专家,DD),Zaki B. Khoury(高级数字发展专家,DD)经济学家,DD),Fausto Patino(年轻专业人士),Oya Pinar Ardic Alper(高级金融部门专家,财务,竞争力和创新-FCI),Harriet Nannyonjo(高级教育专家,教育专家),Aun Ali Rahman,Ali Ali Rahman(金融部门专家) Fatma Ibrahim(法律顾问)。关于“国际贸易流程数字化转型”的盒子是由Marwa Mahgoub(IFC运营官)和Lazar Ristic(FCI顾问)撰写的。
摘要这项研究研究了来自埃及新山谷的伊利特粘土的潜力,用于去除重金属离子(Cu(ii),Ni(ii),Zn(ii)和Cd(ii)),该粘土通过工业废水通过吸附过程。实验在各种受控条件下评估了吸附行为:不同的金属离子浓度,吸附剂剂量,溶液pH和混合时间(在500 rpm时)。使用傅立叶和纳米粘土的表征采用了傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和传输电子显微镜(TEM)。结果表明,在室温下,Illite和Nanoillite在90分钟内通过室温(25°C)在90分钟内通过dirite和nanoillite迅速吸收。所有研究的金属离子(Cu(II),Ni(ii),Zn(ii)和CD(II))的浓度为3 mg/L。此外,吸附等温度数据建议与二阶动力学模型更好地拟合,这表示吸附机理。最后,伊利石/纳米粘土的有效性通过其在去除现实世界工业废水中的金属离子中的应用来证明,从而大大降低了其浓度。这种方法解决了与重金属污染相关的环境和健康问题。关键字:纳米颗粒;吸附;重金属;动力学等温;伊利特;工业废水1。由于其高效率,易于处理性,众多吸附剂的可用性以及负担能力,通常在所有水处理方法中选择吸附,以去除重金属离子。引言近年来,研究重点是从水溶液[1],离子交换[2],化学沉淀[3],植物渗透[4],超滤,逆渗透和电差异[5]中取出重金属[5]只是迁移分解的重量分泌的多种方法中的几种方法。活化碳是使用最广泛的吸附剂,并以其高金属吸附能力而闻名[7]。尽管活性炭是从废水中消除金属离子的有用工具,但其使用量很高,因此需要添加螯合化学物质以最大程度地提高其有效性,从而提高了治疗成本[8]。在过去的二十年中,寻找负担得起,高效的重金属吸附剂的许多工作。此外,已经检查了几种天然材料和废物的吸附行为[9]。这些材料包括农业副产品,微生物和粘土矿物质[10]。这些研究中的大多数表明,天然货物可以作为重金属吸附剂的功能良好[11]。重金属离子发生在许多工业活动中,这种污染对环境和人类健康构成了严重威胁,因为这些金属是不可生物降解的,有毒的,即使在低浓度下,也进入食物链[12]。重金属在人体中的积累会导致大脑,皮肤,胰腺和心脏病[13,14]。重金属被归类为有毒和致癌,它们能够在组织中积累并引起疾病和疾病(表1)。更重要的是,粘土价格便宜,丰富,广泛并且随时可用。粘土表现出可以去除水污染物(例如化学物质[16,17]和重金属[18])的能力。其他考虑因素是用户友好性,文化可接受性和低维护成本。Illite是一个2:1粘土矿物质,几乎没有层间肿胀的趋势[19]。具有Illite的吸附过程取决于几个因素,包括pH,吸附剂含量,初始吸附浓度,接触时间,温度,粒径和离子强度。在常规方法中,实验是通过系统地改变所研究因素的同时将其他因素持续进行的。主要的好处是,不仅可以评估单个参数的影响,而且可以在给定过程中的相对重要性以及得出两个或多个变量的相互作用的能力[20]。这项研究的目的是将伊利特用作吸附剂,然后准备伊利特nano Illite,然后将其用于工业废水水中的cu(ii),ni(ii),Zn(ii),Zn(ii)和cd(ii)离子。我们详细评估了Illite和Nano Illite的去除性能。等温线和热力学建模。
抽象的灰泥古迹非常容易受到损害,其合并需要评估新的和先进的材料。纳米复合材料应用于许多历史材料(如石材和壁画绘画)时,已显示出高度有希望的合并结果。当前的实验研究评估了添加到石墨氮化碳(G-C 3 N 4)中的生物活性玻璃纳米颗粒(BG NP)的有效性,并与丙酮中的寄生虫(B-72)混合。在此,分别通过溶胶 - 凝胶和热分解化学途径制备了生物活性玻璃纳米颗粒和氮化石纳米片。已经使用透射电子显微镜(TEM),X射线衍射(XRD)和傅立叶变换红外(FT-IR)研究了所制备的纳米植物的理化特性。此外,使用动态光散射技术研究了胶体性能。评估协议概述了一个六步过程,以评估经过人工老化程序后与纳米复合材料合并的标准样品的适用性。该研究涉及通过使用数字显微镜和SEM暴露于各种条件后的合并样品的变化,以识别合并后的灰泥样品的外观,并在应用所选的纳米复合材料和人造老化程序后。使用比色表来测量颜色变化,并在老化之前和之后进行样品进行比较。物理和机械性能,并测量接触角以确定疏水性或亲水性。获得的结果表明,生物活性玻璃/G-C 3 N 4杂交纳米复合材料的组成为Bg 0.5%,G-C 3 N 4 1%和B-72 3%在苏顿糖样品的拟议混合物中获得了最佳的固结结果。关键字:灰泥,混合,调查,颜色变化,接触角,SEM,XRD。
肠道神经系统疾病是全球牲畜动物的残疾和死亡原因之一。我们对病理生物学的和谐近期近期有所增加。目前的工作旨在检测GFAP和CD65表达与摩苏尔市绵羊大脑中的显微镜病变相关。在2022年12月5日至2023年2月的期间收集了三十二个样品,以循环障碍(出血和寄生虫感染),寄生感染,生长和脑色素沉着的障碍,以循环障碍(出血和寄生虫感染)为代表的总病变。收集了受影响的样品并准备常规的组织病理学和免疫组织化学检查。相反,炎症发现为31.25%,是单核和多核炎症细胞的浸润,循环系统障碍,循环系统障碍为21.87%,生长障碍占12.5%,寄生虫感染为15.62%,并以6。25%和最终坏死的组织学检查结果显示,脑膜血管中的充血,脑膜血管中的充血,大脑和小脑静脉的严重充血,以及一单核和多核炎性细胞的炎性细胞以及血液上血液中炎性细胞的炎性细胞的浸润以及炎症细胞的浸润。 此外,与泡沫细胞质和化脓性脑炎的吞噬细胞的存在,以及弓形虫性结为虫的幼体阶段,脑组织和脑组织中的肌细胞寄生虫的幼虫阶段的存在以及echaninoccus inchinululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululun 关键词:免疫组织化学,组织病理病变,大脑,绵羊。25%和最终坏死的组织学检查结果显示,脑膜血管中的充血,脑膜血管中的充血,大脑和小脑静脉的严重充血,以及一单核和多核炎性细胞的炎性细胞以及血液上血液中炎性细胞的炎性细胞的浸润以及炎症细胞的浸润。此外,与泡沫细胞质和化脓性脑炎的吞噬细胞的存在,以及弓形虫性结为虫的幼体阶段,脑组织和脑组织中的肌细胞寄生虫的幼虫阶段的存在以及echaninoccus inchinululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululululun 关键词:免疫组织化学,组织病理病变,大脑,绵羊。关键词:免疫组织化学,组织病理病变,大脑,绵羊。关键词:免疫组织化学,组织病理病变,大脑,绵羊。胶质神经元的可再现功能对于神经退行性疾病的细胞变化研究至关重要。此外,由CD65代表的免疫组织化学是少量的E-选择蛋白Lingad和神经胶质纤维酸性蛋白(GFAP),作为未来对细胞的未来计数并作为轻度,中度和严重性病变的候选者。我们得出的结论是,卵子暴露于不同类型的神经退行性疾病。免疫组织化学技术可以用作疾病严重程度的生物标志物,分子生物学技术应用于异常的蛋白质表达。简介
摘要 从埃及土壤和食物来源中分离出产生磷脂酶 C (PLC) 的细菌。通过 16S rRNA 测序,将一种强效假单胞菌分离物鉴定为 P. fluorescens MICAYA,并以基因登录号 (OQ231499) 记录在 GenBank 中。通过 Plackett Burman 和中心复合设计进行优化发现,豆粕、酵母提取物、NaCl 和蛋黄显著提高了磷脂酶 C 的产量。Michaelis-Menten 动力学确定了 K m 为 0.4 mg/ml 蛋黄,V max 为 287 U/ml。Box Behnken 设计确定了 395 U/ml 磷脂酶 C 产量的最佳 pH 值为 6.5、0.55 g/l CaCO 3、1.05% 蛋黄、48.5°C。该磷脂酶对人成纤维细胞表现出低细胞毒性。磷脂酶 C 浓度(0.2-1 ml)可有效脱胶芝麻、洋甘菊、西洋菜、荷荷巴油、橄榄、黑种草和蓖麻油。磷脂酶 C 浓度为 0.4-0.8 ml/L 时磷脂减少率最高。荧光假单胞菌磷脂酶 C 提供了一种可生物降解的化学脱胶替代方法。总之,统计优化成功提高了磷脂酶 C 的产量。表征发现该酶在碱性 pH、中等温度和蛋黄底物下效果最佳。已证明多种植物种子油具有生物脱胶能力。进一步固定化和蛋白质工程可以提高磷脂酶 C 的工业效用。关键词:磷脂酶 C;荧光假单胞菌;培养基优化;油脱胶;酶动力学。 _____________________________________________________________________________________________________________ 1. 简介 磷脂酶 (PLC) 水解磷脂骨架中的磷酸二酯键,根据所涉及的具体磷脂种类产生 1,2-二酰基甘油和磷酸单酯。微生物磷脂酶是催化磷脂水解的酶。由于其广泛的底物特异性、温和条件下的高活性以及易于大规模生产,它们具有广泛的工业应用 [1]。磷脂酶已被用于修改磷脂结构以生产特定脂质、脱胶植物油、合成化妆品成分、改善面团的烘焙特性、产生风味和香气等 [2]。真菌、细菌和酵母等微生物来源的磷脂酶比植物和动物来源具有优势,因为它们可以通过发酵以高产量和纯度生产 [3]。最有效的真菌生产者是黑曲霉、环青霉和少根根霉。黑曲霉可产生高产量的磷脂酶 A1 和 A2 [4]。固定化黑曲霉磷脂酶 A2 对植物油的重复脱胶表现出良好的稳定性 [5]。最常见的细菌生产者是假单胞菌和芽孢杆菌。铜绿假单胞菌和蜡状芽孢杆菌产生胞外磷脂酶 C [6,7]。枯草芽孢杆菌分泌磷脂酶 A2,并且已经通过基因改造以提高产量。在稳定期,荧光假单胞菌可以产生各种具有抗菌潜力的次级代谢物,例如氢氰酸 (HCN)、绿脓杆菌素 (Pit) 和 2,4-二乙酰间苯三酚 (Phi),以及铁螯合代谢物 [8]。绿脓杆菌素、水杨酸和绿脓杆菌素。蛋白酶、磷脂酶 C 和脂肪酶是从各种环境中分离的荧光假单胞菌菌株产生的三种细胞外酶的例子 [9]。在稳定生长期测定的磷脂分解活性水平最高,表明生长阶段依赖机制负责诱导这些酶。此外,酵母生产者是隐球菌,它被固定化并用于大豆油脱胶。 Candida rugosa 是一种脂肪酶和磷脂酶生产者,固定化 C. rugosa 脂肪酶用于结构化脂质的生产 [10]。微生物磷脂酶,如磷脂酶 A1、A2、C 和 D,在脱胶、油脂酯交换、卵磷脂生物合成和废水处理应用中表现出良好的应用前景 [11]。它们的酶水解导致磷脂部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和表征,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。油脂的酯交换、卵磷脂的生物合成和废水处理应用 [11]。它们的酶水解导致磷脂的部分水解,使胶的分离更容易 [12]。响应面法 (RSM) 被有效地用于各种微生物产品的优化和建模 [13]。该方法结合了统计和数学技术,用于模型构建、评估几个独立变量的影响并获得变量的最优值。因此,本研究的目的是利用响应面法的统计方法优化荧光假单胞菌磷脂酶 C 的生产和特性,并研究其在某些植物油脱胶中的应用。
本研究设计并合成了六种新型聚马来酰亚胺,它们由三个重要部分组成,即马来酰亚胺环、席夫碱和柠康酸。新型聚合物的合成分为多个步骤,第一步,通过 4-氨基苯乙酮与马来酸酐反应制备 N-(4-乙酰苯基)马来酰胺酸。第二步,N-(4-乙酰苯基)马来酰胺酸脱水得到 N-(4-乙酰苯基)马来酰亚胺,第三步,N-(4-乙酰苯基)马来酰亚胺与联苯胺发生缩合反应,生成 4-(N-马来酰亚胺基甲基苄亚甲基)-4'-氨基-1,1'联苯,该化合物与柠康酸酐反应得到 4-(N-马来酰亚胺基甲基苄亚甲基)-4'-(N-柠康酸)-1,1'-联苯。最后一种化合物是本研究的关键化合物和新的重要单体,它含有两个乙烯基键,可通过自由基均聚和共聚反应轻松引入,生成新的均聚物和共聚物。除共聚反应外,本体席夫碱和柠康酸组分的存在使新聚合物具有良好的可熔性和溶解性,从而更易于加工和广泛应用。关键词共聚反应、聚酰亚胺、链间力、柠康酸。1. 简介