研究工作 我的研究集中在开发计算建模技术上,以便更好地了解人类行为背后的神经解剖学和功能。我的工作主要集中在高场和超高场的磁共振成像 (MRI)。在方法论和应用工作中,我推进了层状 MRI 和 fMRI 的研究、脑髓鞘和铁的体内成像、小脑皮层和神经血管的映射以及皮层下分区。凭借计算神经解剖学的坚实基础,我最近研究了白质病理对认知和健康的影响、功能连接梯度的解剖学基础以及神经可塑性对 MRI 的影响。我最近的努力更加集中于构建皮层下结构和功能的详细模型,皮层下是人类大脑中一个重要但研究不足的区域,通过从显微镜到系统架构和认知模型的跨越。这些努力不仅体现在国际期刊和会议的出版物中,也体现在开源软件包和开放数据集等开放科学成果中。
Physalis属包括未充分利用的物种,例如Groundcherry(Physalis Grisea)和Goldenberry(Physalis Peruviana),这些物种因其高度营养丰富的果实而受到重视。但是,农民的广泛采用受到阻碍,因为几乎没有做出任何改进。因此,它们的增长类似于野生物种,使生产管理具有挑战性。为了解决这个问题,我们正在使用基因组编辑来纠正不良特征,例如物种中的野生,不可控制的生长和果实的水果滴,由于脚踏室的关节区域脱落而在所有成熟阶段都发生。用于植物生长修饰,我们使用了三种不同基因的CRISPR/CAS9介导的诱变:自我促进,臂臂和勃起。编辑的线条表现出紧凑的生长习惯,其基因和物种也有所不同。为防止接地果实脱落,我们瞄准了无节型基因,并消除了花梗关节,使果实可以在植物上完全成熟。将对所有编辑的线条的果实糖含量,产量和其他与农业相关的特征进行评估。此外,我们正在使用GroundCherry作为模型探索无组织培养的基因组编辑。迄今为止,我们已经成功编辑了植物去饱和酶基因,并以预期的漂白表型恢复了后代。总的来说,我们的工作是将未充分利用的物种带到农艺可行作物水平的模型。
不含销售费 2020 2021 2022 2023 2024 年初至今 2024 年第四季度 机构 3.57 6.19 -2.95 6.44 6.83 6.83 -2.31 基准 0.67 0.05 1.47 5.02 5.25 5.25 1.17 晨星平均指数 1.63 6.86 -2.07 6.24 6.09 6.09 0.29 所示业绩数据代表过往业绩,并不保证未来业绩。投资回报和本金价值可能会波动,因此投资者赎回时股份的价值可能高于或低于其原始成本。当前表现可能低于或高于所示表现。所有回报假设所有股息和资本利得分配均已再投资。有关当前月末表现,请参阅 blackrock.com。所示指数表现仅供参考。无法直接投资非管理型指数。机构股票数量有限,最低购买限额各不相同。请参阅基金招股说明书了解更多详情。
我们的年度午餐会于 2024 年 11 月 13 日举行,有 30 名 Meadows 退伍军人参加。午餐会由基督路德教会的沃森牧师主持,用风笛演奏军乐。在沃森牧师向国旗敬礼和祈祷之后,宣读了所有已故 Meadows 退伍军人的名字,随后进行了默哀,并致欢迎词。随后,吉恩·贝利因对社区的杰出服务获得了 Bravo Zulu 奖。今年我们有 2 位演讲嘉宾。第一位是玛莎·戈登,她向我们介绍了海军女性的生活,并介绍了一些在潜艇上服役的事实。我们的下一位演讲嘉宾是梅丽莎·齐奥布罗,她是蒙茅斯大学的教授,也是蒙茅斯堡的前历史学家。她介绍了蒙茅斯堡的历史以及在那里开发的通信系统。然后,麦克风在房间里传递,每个人都自我介绍并说了几句关于他们军事历史的话。然后以小组为单位拍照。只剩下吃的了!退伍军人委员会要感谢 Tom Jones 为我们打印名牌,感谢 Bob Kennedy 担任现场摄影师。感谢 Stitch & Knit Ladies 为每位退伍军人提供物品。特别感谢所有为我们提供甜点的女士。这些甜点总是很美味,退伍军人非常感激。所有在厨房帮忙准备食物和事后清理的人,Joyce Rager、Helen Jasinski、Terri Martens、Denise Lang、Judy Kennedy、Barbara Hannenberg、Diane Grega、Audrey Fulton、Georgina Price、Pat O'Gara 和 Donna Amendt。我们为任何我们错过的人道歉。我们非常感谢社区对我们的退伍军人的支持,不仅是在这些活动中,而且是多年来,上帝保佑你们,上帝保佑美国。退伍军人委员会
我们的方法 EngineeringEdge NextGen 是一种灵活、动态、标准的方法,用于规划和执行项目生命周期的所有基本活动。我们利用包含 50 多年经验和经验教训的成熟资产库,根据项目特征(例如规模、复杂性和领域)定制其应用程序。EngineeringEdge NextGen 优化并增强了整个企业的项目管理和执行,提高了进度绩效和产品质量。它将行业标准、模型和最佳实践与自动化相结合,提供独立的解决方案,可优化工作流程、降低各个级别的项目成本并降低整个项目和产品生命周期的风险。
通过推杆将温度传感器连接到传感器。该测试的精度低于干涉测量法,并且该测试通常适用于 CTE 高于 5 × 10 –6 /K (2.8 × 10 –6 /°F) 的材料,温度范围为 –180 至 900 °C (–290 至 1650 °F)。推杆可以是玻璃硅类型、高纯度氧化铝类型或各向同性石墨类型。氧化铝系统可将温度范围扩展到 1600 °C (2900 °F),石墨系统可将温度范围扩展到 2500 °C (4500 °F)。ASTM 测试方法 E 228(参考文献 2)涵盖使用玻璃硅推杆或管膨胀仪测定刚性固体材料的线性热膨胀。干涉测量法。使用光学干涉技术,样品端部的位移是根据单色光的波长数来测量的。精度明显高于膨胀仪,但由于该技术依赖于样品表面的光反射率,因此在 700 °C (1290 °F) 以上时,干涉测量法的使用并不多。ASTM 测试方法 E 289(参考文献 3)提供了一种使用干涉法测量刚性固体线性热膨胀的标准方法,该方法适用于 –150 至 700 °C(–240 至 1290 °F)的温度,更适用于 CTE 较低或为负值且范围小于 5 × 10 –6 /K(2.8 × 10 –6 /°F)的材料,或只有有限长度厚度的其他高膨胀系数材料。热机械分析测量由热机械分析仪进行,该分析仪由试样支架和探头组成,探头将长度变化传输到传感器,传感器将探头的运动转换为电信号。该设备还包括一个用于均匀加热的炉子、一个温度传感元件、卡尺和一个记录结果的工具。ASTM 测试方法 E 831(参考文献 4)描述了通过热机械分析对固体材料进行线性热膨胀的标准测试方法。该方法的 CTE 下限为 5 × 10 –6 /K (2.8 × 10 –6 / ° F),但可以在较低或负膨胀水平下使用,但准确度和精度会降低。适用温度范围为 –120