Contents ......................................................................................................................................................... i
摘要 — 由于器件尺寸不断缩小,标准单元变得越来越小,而电源线占据了可用空间的很大一部分。埋入式电源线 (BPR) 和背面电源 (BSP) 越来越受到关注,因为它们能够将标准单元高度从传统正面电源线 (FS-PR) 中的 6 轨分别降低到 5 轨和 4 轨。在本文中,我们从功率、性能和面积 (PPA) 的角度对器件、标准单元和全芯片设计级别的电源线拓扑进行了全面的比较。我们的实验表明,BPR 和 BSP 的纳米片宽度缩放分别使器件栅极电容降低了 26% 和 40%,从而在标准单元级分别将内部功率提高了 33% 和 40% 以上,在全芯片级分别将总功率下降了 24% 和 30% 以上。此外,与 FSPR 相比,BPR 可将布局缩小 7%,而 BSP 甚至可以再缩小 17%。这项研究还证明了 BPR 和 BSP 拓扑中背面供电网络 (BS-PDN) 在 IR 压降方面的优势。
摘要 本研究开发了用于三维集成电路 (3D-IC) 的背面埋入金属 (BBM) 层技术。该技术在每个芯片背面的大片空白区域引入用于全局电源布线的 BBM 层,并与芯片正面布线并联。电源 (V DD ) 和地 (V SS ) 线的电阻因此而降低。此外,由于 BBM 结构埋入 Si 衬底中并具有金属-绝缘体-硅结构,因此可充当去耦电容。因此,引入 BBM 层可以降低电源传输网络的阻抗。3D-IC 的 BBM 层制造工艺简单,并且与后通孔硅通孔 (TSV) 工艺兼容。利用该工艺可以在 CMOS 芯片(厚度:43 µm)背面埋入由电镀 Cu(厚度:约 10 µm)组成的 BBM 层,并通过直径 9 µm 的 TSV 将 BBM 与芯片正面布线相连。 关键词 三维集成电路(3D-IC),背面埋入金属(BBM)层,硅通孔(TSV),供电网络 I. 引言 采用硅通孔(TSV)的三维集成电路(3D-IC)技术[1]–[5]是生产先进、高速、紧凑和高功能电子系统的有效方法。然而,堆叠多个芯片会导致电路设计的电源完整性问题。例如,由于可用于电源和地线的 TSV 数量有限,3D-IC 中的 IR 压降会增加。此外,在 3D-IC 中同时切换堆叠芯片时,会产生很大的同时切换噪声(di/dt 噪声)。这种同步开关噪声会在电源输送网络 (PDN) 中产生不可预测的电压变化,从而导致系统故障。为了解决这一电源完整性问题,不仅必须在电路板/中介层级降低 PDN 的阻抗,还必须在芯片级降低 PDN 的阻抗,并提高电源输送的可靠性。先前的研究提出了一些降低芯片级 PDN 阻抗的方法。第一种方法是加宽电源线/地线。这种方法非常简单,但由于线路资源有限,难以应用。