纳米孔测序是第三代测序技术,具有生成长阅读序列并直接测量DNA/RNA分子的修改,这使其非常适合生物学应用,例如人类端粒对象至tomemere(T2T)基因组组装,Ebola Virus Surveillance和Covid-19 Mrna vaccine vaccine vacine vaccine vacine vaccine vaccine vaccine vacine。但是,纳米孔测序数据分析的各种任务中计算方法的准确性远非令人满意。例如,纳米孔RNA测序的碱基调用精度约为90%,而目标的基础精度约为99.9%。这凸显了机器学习社区的迫切需要。一种阻止机器学习研究人员进入该领域的瓶颈缺乏大型集成基准数据集。为此,我们提出了纳米巴塞利布(Nanobaselib),这是一个综合的多任务台上数据集。它将16个公共数据集与纳米孔数据分析中的四个关键任务进行了超过3000万个读取。为了促进方法开发,我们已经使用统一的工作流进行了预处理所有原始数据,并以统一的格式存储了所有中级结果,分析了针对四个基准测试任务的各种基线方法分析的测试数据集,并开发了一个软件包来轻松访问这些结果。纳米巴斯利布可在https://nanobaselib.github.io上找到。
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
(棕色),只有G基因(深红色)和缺失的G和F基因测序(也称为深绿色的“其他”),分别由DNA纯化(紫色)救出。在基因组位置(蓝色)和(红色)PCR扩增子清理的基因组位置的测序代表性RSV-A(E)和RSV-B(f)的覆盖深度。bar图显示了NGS的折叠变化读取的映射到未经PCR扩增子纯化的未经和带有PCR扩增的放大器的测序样品和高(g)和高(H)浓度的RSV参考基因组。将洗涤的PCR扩增子的库的 ngs读取为标准化,并表示为对未洗的PCR扩增子的折叠更改,该折叠设置为1。。 数据表示为平均值±SD。 进行 t检验分析的统计显着性。 p值小于0.05被认为具有统计学意义,并将其标记为 *。ngs读取为标准化,并表示为对未洗的PCR扩增子的折叠更改,该折叠设置为1。数据表示为平均值±SD。t检验分析的统计显着性。p值小于0.05被认为具有统计学意义,并将其标记为 *。
• 2.5D IC 与 2D IC 的区别在于,2.5D IC 在芯片和基板之间添加了一个硅中介层,中介层上表面和下表面的金属化层之间通过 TSV 连接。[10] 这样,通过将芯片并排放置,就可以实现不同芯片之间的互连。例如:存储器芯片与逻辑芯片。
摘要:有机发光二极管(OLEDS)被广泛认为是显示和照明技术的前沿技术。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。 近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。 在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。 同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。
对千人基因组计划样本进行高覆盖率纳米孔测序,以建立人类遗传变异的综合目录 作者 Jonas A. Gustafson 1,2,*, Sophia B. Gibson 1,3,*, Nikhita Damaraju 1,4,*, Miranda PG Zalusky 1 , Kendra Hoekzema 3 , David Twesigomwe 5 , Lei Yang 6 , Anthony A. Snead 7 , Phillip A. Richmond 8 , Wouter De Coster 9,10 , Nathan D. Olson 11 , Andrea Guarracino 12,13 , Qiuhui Li 14 , Angela L. Miller 1 , Joy Goffena 1 , Zachary B. Anderson 1 , Sophie HR Storz 1 , Sydney A. Ward 1 , Maisha Sinha 1 , Claudia Gonzaga-Jauregui 15 、Wayne E. Clarke 16,17 、Anna O. Basile 16 、André Corvelo 16 、Catherine Reeves 16 、Adrienne Helland 16 、Rajeeva Lochan Musunuri 16 、Mahler Revsine 14 、Karynne E. Patterson 3 、Cate R. Paschal 18,19 、Christina Zakarian 3 、Sara Goodwin 20 、Tanner D. Jensen 21 、Esther Robb 22 、1000 基因组 ONT 测序联盟、华盛顿大学罕见疾病研究中心 (UW-CRDR)、阐明罕见疾病遗传学的基因组学研究 (GREGoR) 联盟、W. Richard McCombie 20 、Fritz J. Sedlazeck 23,24,25 , Justin M. Zook 11 , Stephen B. Montgomery 21 , Erik Garrison 12 , Mikhail Kolmogorov 26 , Michael C. Schatz 14 , Richard N. McLaughlin Jr. 2,6 , Harriet Dashnow 27,28 , Michael C. Zody 16 , Matt Loose 29 , Miten Jain 30 , Evan E. Eichler 3,31,32 , Danny E. Miller 1,19,31,** 附属机构 1. 美国华盛顿州西雅图华盛顿大学儿科系遗传医学分部 2. 美国华盛顿大学西雅图分子与细胞生物学项目 3. 美国华盛顿大学基因组科学系 4. 美国华盛顿大学西雅图公共卫生遗传学研究所 5. 悉尼南非约翰内斯堡威特沃特斯兰德大学健康科学学院布伦纳分子生物科学研究所 6. 美国华盛顿州西雅图太平洋西北研究所 7. 美国纽约州纽约纽约大学生物系 8. 美国路易斯安那州巴吞鲁日阿拉米亚健康中心 9. 比利时安特卫普 VIB 分子神经病学中心应用和转化神经基因组学组 10. 比利时安特卫普大学生物医学科学系 11. 美国马里兰州盖瑟斯堡国家标准与技术研究所材料测量实验室 12. 美国田纳西州孟菲斯田纳西大学健康科学中心遗传学、基因组学和信息学系 13. 意大利米兰人类科技城 14. 美国马里兰州巴尔的摩约翰霍普金斯大学计算机科学系 15. 国际人类基因组研究实验室人类基因组研究,墨西哥国立自治大学 16. 纽约基因组中心,美国纽约州纽约市 17. Outlier Informatics Inc.,萨斯卡通,萨斯卡通,加拿大 18. 西雅图儿童医院实验室部,西雅图,华盛顿州,美国 19. 检验医学和病理学部,美国华盛顿大学,美国华盛顿州西雅图 20. 冷泉港实验室,美国纽约州冷泉港 21. 斯坦福大学遗传学系,美国加利福尼亚州斯坦福 22. 斯坦福大学计算机科学系,美国加利福尼亚州斯坦福 23. 贝勒医学院人类基因组测序中心,美国德克萨斯州休斯顿
正在申请专利的 ExpressPlex 2.0 文库制备试剂盒采用方便的 384 孔 PCR 板配置,可用于高通量多重文库制备。此升级版 ExpressPlex 使用 seqWell 的高性能 TnX ™ 转座酶,该转座酶专为 NGS 文库制备而设计。扩增子 (>350 bp) 和质粒 DNA 是适合该试剂盒的标准输入。附录 E 重点介绍了可以针对小型微生物全基因组测序进行的修改。ExpressPlex 文库与 Illumina MiSeq ™ 、NextSeq ™ 、iSeq ™ 和 NovaSeq ™ 测序平台兼容。每个 ExpressPlex 2.0 - 384 孔试剂盒都包含足够的试剂,可从 384 或 1,536 个单独的 DNA 样本制备与 Illumina 兼容的文库。每个库的标准制备量为 384 个样本,每个试剂盒最多 1,536 个样本。有四种不同的试剂盒可用于从 1,536 个样本中制备文库,在一次测序运行中可加载总共 6,144 种条形码组合。这种多重文库制备程序针对每 8 µl 反应 0.5 - 20 ng 质粒或扩增子 DNA 的输入进行了优化,通常可生成 400 – 1,200 bp 的文库片段长度。文库片段长度取决于 DNA 的质量和所用的磁珠清理率。使用 ExpressPlex 文库制备试剂盒的主要优势和好处是简化的一步式多重文库制备工作流程,可在 40 倍的 DNA 输入浓度范围内自动标准化每个样本的读取输出,同时最大限度地减少人工和耗材成本。使用 ExpressPlex 2.0 – 384 孔试剂盒,可在 120 分钟内制备 384 重文库以进行文库 QC 和测序,手动操作时间不到 30 分钟。
纳米多孔锡2 O 7(nptno)材料通过用离子液体(IL)作为指导温度的纳米多孔结构合成的溶胶 - 凝胶方法。nptno即使以50°C的充电速率,在5 c时为1000个周期和lini 0.5 mn 1.5 o 4-耦合的全细胞容量重新构成的全细胞能力接力为81%和87%的87%和87%cass in 1000 cycles at 1 c cycles at 1 c cycles at 1 c cycles nptno的高可逆能力为210 mAh g –1。 对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。 测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。 受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。 因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。nptno的高可逆能力为210 mAh g –1。对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。