近年来,半导体技术的不断缩小,极大地受益于三维(3D)集成技术和三维晶体管的快速发展。1 – 7预计未来迫切需要在更复杂的3D器件和3D动态随机存取存储器(3D DRAM)方面取得进一步进展。在此过程中,需要开发和采用许多创新的测量技术来表征3D器件和3D单元,以深入了解新器件和新材料的结构-功能关系,从而辅助设计性能更佳的先进3D器件。随着3D器件变得越来越复杂,涉及更多的埋置固/固界面,而这些埋置界面上的分子相互作用对整个器件的性能起着关键作用,应进行原位研究。极紫外 (EUV) 光刻技术已用于 3D 技术,其通过次数不断增加,可用于 7 纳米和 5 纳米节点逻辑集成电路以及 16/14 纳米节点 DRAM 的批量生产。8 – 10 与 193 纳米浸没式光刻技术相比,
量子自旋霍尔绝缘体的特征在于二维 (2D) 内部的带隙和螺旋状一维边缘态 1 – 3。在螺旋边缘态中诱导超导可产生一维拓扑超导体,拓扑超导体是许多拓扑量子计算提案的核心,是一种备受追捧的物质状态 4。在本研究中,我们通过将单层 1T ′ -WTe 2(量子自旋霍尔绝缘体 1 – 3)放置在范德华超导体 NbSe 2 上,报告了范德华异质结构中超导性和量子自旋霍尔边缘态的共存。使用扫描隧道显微镜和光谱 (STM/STS),我们证明 WTe 2 单层由于底层超导体而表现出邻近诱导的超导间隙,并且量子自旋霍尔边缘态的光谱特征保持不变。综上所述,这些观察为 WTe 2 中量子自旋霍尔边缘态的邻近诱导超导提供了确凿证据,这是在这种范德华材料平台上实现一维拓扑超导和马约拉纳束缚态的关键一步。当代人们对拓扑超导体的兴趣是由其无间隙边界激发的潜在应用驱动的,这些激发被认为是具有非阿贝尔统计特性的突发马约拉纳准粒子 5 – 8 。实现拓扑超导的一条途径是实现本征无自旋 p 波超导体 9 。一个强有力的替代方法是使用传统的 s 波超导体通过超导邻近效应在拓扑非平凡状态下诱导库珀配对,从而产生有效的 p 波配对 10 。这种方法最近已被用于在超导衬底上生长的外延三维拓扑绝缘体膜中设计二维(2D)拓扑超导11,12,和通过在埋置外延半导体量子阱中接近二维量子自旋霍尔系统设计一维拓扑超导13,14。虽然这些演示标志着重要的里程碑,但在范德华材料平台上探索拓扑超导具有明显的优势。使用分层二维材料可以使二维量子自旋霍尔边缘在垂直异质结构中接近,从而绕过横向接近效应几何的长度限制。此外,表面和边缘易于进行表面探针探测,从而可以检测和基础研究一维拓扑超导态的特征。本征量子自旋霍尔态已在 1T ′ -WTe 2 单层中得到实验证明(参考文献 1 - 3、15 - 17),这与早期的理论预测 18 一致。
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组