前沙漠岩营地,又称沙漠岩训练区和沙漠原子营,在 1940 年至 1965 年间被美国军方用作战场训练演习的集结地。通过历史研究和实地考察,已确定与前沙漠岩营地有关的一小块区域,即沙漠岩营地 - 埋地雷,存在潜在的爆炸危险。已知或怀疑埋藏在此地区的弹药包括练习用地雷。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
Claudia Cancellieri 博士是 Empa 连接技术和腐蚀实验室的团队负责人/研究员。2008 年,她在洛桑联邦理工学院 (EPFL) 获得物理学博士学位,专门研究应变下铜氧化物和氧化物薄膜的脉冲激光沉积生长。在日内瓦大学的第一个博士后期间,她专注于复杂氧化物界面的生长和特性。她在同步加速器瑞士光源保罗谢尔研究所继续研究该主题,在那里她广泛使用光谱技术来推导埋藏复杂氧化物界面的电子能带结构。她目前的研究课题包括研究功能材料(包括多层系统)的微观结构、缺陷、应力和电子特性。
只阅读发现的事实;好像科学和好奇心已经满足,不再关心进一步的研究。在漫长的黑暗时代和中世纪,每年一定都有这样的发现,但只看重它们的内在价值;甚至在罗马时代也经常有这样的发现。比利牛斯省军队的频繁调动本身就经常需要埋藏不能携带的钱币。其中一些窖藏无疑被原主找回;但在战争时期,永远无法指望能归还到存放地;特别是在特殊紧急情况下向高卢派遣大部队时,归还的机会确实很小;这些窖藏留给后世无知的农夫和目不识丁的乡巴佬来震惊他们;更少见的是,它们被用来锻炼当今钱币学家的耐心和奖励他们的劳动。
使用精确射线追踪技术开发了地面穿透雷达的正向建模。地面模型的结构边界通过离散网格合并,其界面由样条函数、多项式描述,对于圆形物体等特殊结构,边界以其函数公式给出。在合成雷达图方法中,计算了许多不同波类型的波形贡献。使用精细数字化的天线方向响应函数,可以统计建模埋藏目标的雷达截面和接收天线的有效面积。还监测了沿射线路径的衰减。正向模型用于:(1)作为学习工具,以避免雷达图解释中的陷阱,(2)了解跨各种工程结构测量的雷达信号,以及(3)预测日本重要考古遗址下埋藏的文化结构的响应。
在过去的 80 年中,探地雷达(GPR)已经从一种受质疑的冰川探测器发展成为一种完整的多分量 3D 体积成像和表征设备。该工具可以校准,以便定量估计水含量等物理特性。由于其高分辨率,GPR 是量化地下异质性的宝贵工具,并且它能够看到非金属和金属物体,使其成为一种有用的测绘工具,可以检测、定位和表征埋藏物体。没有一种工具可以解决所有问题;因此,要确定 GPR 是否适用于给定问题,研究失败的原因可以提供对基础知识的理解,这反过来又可以帮助确定 GPR 是否适用于给定问题。我们讨论了钻孔雷达的具体方面,并描述了最近的发展,以提高灵敏度
2 桑迪亚国家实验室,美国新墨西哥州阿尔伯克基 87185 3 加利福尼亚大学机械工程系,加利福尼亚州圣巴巴拉 93106,美国 a) 通讯作者:aatalin@sandia.gov 了解和控制电荷载流子与埋藏绝缘体/半导体界面缺陷的相互作用对于实现现代电子产品的最佳性能至关重要。在这里,我们报告了使用扫描超快电子显微镜 (SUEM) 远程探测埋藏在厚热氧化物之下的 Si 表面的激发载流子的动力学。我们的测量结果展示了一种新颖的 SUEM 对比机制,即半导体中空间电荷场的光学调制会调制厚氧化物中的电场,从而影响其二次电子产量。通过分析 SUEM 对比与时间和激光能量密度的关系,我们证明了界面陷阱通过扩散介导捕获激发载流子。
由于各种原因,超声导波与 NDE 和 SHM 的集成正在迅速发展。由于对结构的访问有限,并且只能从结构上的单个位置的传感器检查大面积区域,因此超声导波通常是解决问题的唯一方法。超声导波与更标准的超声体波检查非常不同,后者可以进行数百种测试模式,而体波只能进行两种检查模式,即纵向和剪切。大约 15 年前,随着导波检查的兴起,人们对其使用寄予厚望,但后来由于缺乏理论理解和建模分析所需的计算能力薄弱而受到阻碍。在从实验室到现场的技术转移过程中,我们经常遇到涂层、隐藏、埋藏结构和环境中的几何复杂性等诸多挑战。他们的许多问题现在已经得到克服,技术转移和产品开发正在迅速推进。导波创新在应用、灵敏度和穿透力方面令人惊叹。这些页面讨论了其中一些进步。
摘要:遗传信息的转移始于与DNA上特定位点结合的跨文字因子(TFS)。但在活细胞中,DNA主要被核小体覆盖。有蛋白质,称为先驱TF,可以有效地到达核小体隐藏的DNA位点,尽管不了解基本机制。使用最近提出的相互作用补偿机制的思想,我们开发了一个随机模型,用于核小体呼吸对DNA的目标搜索。发现,与没有呼吸的情况相比,核小体呼吸可以显着加速先锋TF的搜索。我们认为,这是相互作用补偿机制的结果,该机制使蛋白质可以通过外部DNA段进入内核小体区域。建议自然优化的先驱TFS利用核小体呼吸。所提出的理论图片为成功侵袭核小体埋藏基因提供了可能的微观解释。
位于哈萨克斯坦大草原的戈尔斯克,是一栋由 25 栋建筑组成的综合体,旨在将炭疽、马尔堡和埃博拉病毒武器化。在《病菌》一书中,外交官安迪韦伯描述了这座“让他们恐惧”的建筑群。该大院的安全围栏已被撕破,不再通电。运动探测器也不见了。曾经阻止致命微生物逃逸的气闸也敞开着。在 600 号楼,美国人发现了一个 50 英尺高的气溶胶测试室,在那里用动物测试微生物。还有复兴岛 - 现在与正在萎缩的咸海中的陆地相连 - 苏联人在那里埋藏了武器级的炭疽。《病菌》一书解释道,“在旧试验场的边缘,苏联士兵将漂白剂倒入罐中以对致命的粉红色粉末进行消毒。然后他们挖了巨大的坑,把污泥倒入地下,掩埋了净化后的孢子,莫斯科希望这是一个严重的政治威胁”