摘要:使用机器进行快速、轻松和准确的翻译是许多人的梦想,长期以来一直吸引着技术爱好者和翻译爱好者。遗憾的是,技术限制阻碍了计算机超越文字,从而影响了它们提供比缺乏上下文意义的直译更多的内容的能力,阻止了这一幻想成为现实。然而,人工智能 (AI) 的近期崛起再次激发了人们对此类技术应用的兴趣。虽然不可否认它仍处于测试阶段,并且仍然依赖于翻译人员的贡献来增强它的功能,但使用人工智能进行翻译的初步结果至少可以说是充满希望的。因此,一场埋藏多年的激烈争论再次浮出水面,即这项技术的发展是否对翻译人员未来的就业能力构成威胁,还是为翻译领域带来创新并将其带入数字时代提供了机会。本研究的目的是调查阿尔及利亚翻译教师对这方面取得的进步的认识,了解他们对此事的看法,并报告他们是否愿意为这项技术的发展做出贡献。因此,对来自 Djillali Liabes 大学的 10 名教师进行了开放式问卷调查。调查结果揭示了对此事的各种观点和态度。
摘要:使用 I5N 示踪技术测量了 6 个欧洲潮汐河口(莱茵河、斯凯尔特河、卢瓦尔河、吉伦特河和杜罗河)的氨和硝酸盐吸收量。氨和硝酸盐的吸收率分别为 0.005 至 1.56 pmol N 1-' hI 和 0.00025 至 0.25 pmol N 1-' hI,且在河口之间和河口内部存在显著差异。使用相对优先指数 (RPI) 分析氮吸收量表明,氨是首选底物。颗粒氮的周转时间(0.7 至 31 天)和溶解氨的周转时间(0.1 至 27 天)与河口水停留时间相似或更短,而溶解硝酸盐的周转时间(19 至 2160 天)比停留时间长。因此,河口水柱中硝酸盐的同化不会影响其分布,除非发生显著的反硝化作用和/或埋藏在沉积物中,否则河口中大部分硝酸盐都会被冲走。由于铵和颗粒氮被有效地再循环,大多数外来有机物在输出、埋藏或被更高营养级消耗之前都经过了广泛的微生物改性。
[4-(3,6-二甲基-9H-咔唑-9基)丁基]膦酸 (Me-4PACz) 自组装分子 (SAM) 是解决倒置钙钛矿太阳能电池 (PSC) 中 NiO x 埋层界面问题的有效方法。但 Me-4PACz 端基 (咔唑核心) 不能强制钝化钙钛矿薄膜底部的缺陷。这里采用 Co-SAM 策略来修改 PSC 的埋层界面。Me-4PACz 掺杂氯化磷酰胆碱 (PC) 形成 Co-SAM 以提高单层覆盖率并降低漏电流。PC 中的磷酸基和氯离子 (Cl − ) 可以抑制 NiO x 表面缺陷。同时,PC 中的季铵离子和 Cl − 可以填充钙钛矿薄膜中的有机阳离子和卤素空位,使缺陷钝化。此外,Co-SAM 可以促进钙钛矿晶体的生长,协同解决埋藏缺陷问题,抑制非辐射复合,加速载流子传输,并减轻钙钛矿薄膜的残余应力。因此,Co-SAM 修饰的器件表现出高达 25.09% 的功率转换效率以及出色的器件稳定性,在单太阳照射下运行 1000 小时后,初始效率仍为 93%。这项工作展示了通过修饰 NiO x 上的 Co-SAM 来提高 PSC 性能和稳定性的新方法。
a) 泥炭 ,煤的前身。最近堆积起来的部分碳化的植物残骸。泥炭是一种有机沉积物。埋藏、压实和煤化会将其转化为煤,一种岩石。它在干燥无灰基础上的碳含量较低。 b) 褐煤 ,或称棕色煤,是煤的最低等级,对健康最有害,几乎专门用作发电燃料。这是最软、最年轻、最潮湿的煤,通常被称为“褐煤”,碳含量低(表 1),能量含量也较低。 c) 亚烟煤 ,其特性介于褐煤和烟煤之间,主要用作蒸汽发电的燃料。 d) 烟煤 ,一种致密的沉积岩,通常呈黑色,但有时呈深褐色,通常带有清晰的亮暗物质带。它主要用作蒸汽发电的燃料和制造焦炭。这是第二级煤,比无烟煤更软、更年轻,含碳量较低(75-92%),因此水分和挥发物更多。这种等级的煤用于发电和钢铁生产,在美国,其平均“原样”能量含量为 2400 万英热单位/吨。e) 无烟煤,最高等级的煤,是一种较硬、有光泽的黑色煤,主要用于住宅和商业空间供暖。这是等级最高、最硬、最古老、最不常见的煤。它具有高能量含量、高碳含量(>90%)和相对较少的水分或挥发物。在美国,无烟煤主要用于
2.1 简介 3 2.2 解决方案 3 2.3 任务场景 4 3.1 技术概述 6 3.2 设计和优化 6 3.2.1 金属板合金的选择 7 3.2.2 金属板厚度的选择 7 3.2.3 充气压力的选择 7 3.2.4 二维金属板形状的选择 7 3.2.5 设计预测和优化的有限元应力分析方法 8 3.2.6 制造技术 8 3.2.7 充气技术 9 3.2.8 耐磨性 9 3.2.9 目标储存温度和压力的选择 9 3.2.10 风化层热性能验证 10 3.2.11 抗热梯度 12 3.2.12 埋藏深度的选择 12 3.3 测试方法 13 3.4 利益相关者13 3.5 风险管理 14 4.1 概述 16 4.2 验证测试 16 4.2.1 标准化充气压力 16 4.2.3 真空测试 18 4.2.4 低温储存 18 4.2.5 微陨石撞击与金属可修复性 19 4.2.7 焊接可靠性 20 4.2.8 强度测试 21 4.2.8 退火对碳钢的影响 21 5.1 未来发展路径 23 5.1.1 进一步的可靠性测试 23 5.1.2 大型模块测试的可扩展性 23 5.1.3 月球上焊接 23 5.1.4 Artemis 基地低温系统集成 23 5.1.5 地下模块的挖掘/安装 23 5.1.6 优化热管理低温学 24 5.1.7 NASA 组织 Artemis 基地资源的热管理 24 5.1.8 优化 METALS 几何结构以实现高效填充 24 5.1.9 传热实验 24 6.1 项目领导与管理 25
尽管奖金 4,000 万美元的 Google Lunar X-Prize 未能于 2018 年将私人资助的月球车送上月球并行驶 0.5 公里,但仍有几项重大月球任务正在筹划中。尽管如此,两大竞争对手 Moon Express 和 Astrobotic 以及新来者 Blue Origin 仍在积极制定私人月球资产开发计划。更雄心勃勃的是,SpaceX 计划在 2023 年使用猎鹰重型火箭和龙飞船将两名付费游客送上月球。近期还有几项政府资助的月球任务计划。NASA 的努力集中在深空门户上,这是一个绕月轨道运行的空间站,将支持宇航员指挥月球表面的机器人资产。最终,它将扩大到包括一个月球表面基地,最有可能是在月球南极。欧空局的月球村是一个人机月球基础设施,其概念类似于国际南极基地,旨在满足多个政府和私营部门的目标(Crawford,2017)。从纯科学的角度来看,开发支持载人探索计划的基础设施可用于促进无法以其他方式进行的科学研究(Crawford,2001)。月球村基础设施将允许进行复杂的探索活动,从对保存在风化层中的地球埋藏样本进行天体生物学研究到独特的天文观测,尤其是从月球背面进行的射电望远镜观测。然而,科学不会成为月球村的驱动力,而是出于政府的战略和/或商业原因。无论如何,原位资源(ISRU)对于确保月球的可持续性至关重要。俄罗斯和欧洲的 Luna 27 号联合任务旨在展示 ISRU 技术,与最近取消的美国月球资源勘探者任务有许多相似之处
城市地下交叉换乘地铁车站修建中经常会遇到埋藏较浅、围岩不同、跨度和高度较大、道路交通拥堵以及周边建筑物对施工顺序敏感等困难,因此需要建立控制地下空间稳定性和地面沉降的地下工程。本文针对某车站的施工难点(最大开挖面积超过760 m 2 ),对该类换乘车站结构及施工开挖进行综合选型设计、施工力学响应、控制技术等。首先,借鉴大型地下换乘交通工程设计经验,充分考虑地层条件,提出一种“拱墙式”交叉换乘结构工法。经过精细数值分析,表明该结构可充分利用地层条件,减小地表沉降。 10、针对大断面施工过程中围岩稳定性问题,在传统大断面开挖方法的基础上,提出了“交叉岩梁+掘进法”施工方法。为验证该施工方法的效果,采用三维详细数值模型模拟施工工况,探究各开挖步骤下围岩力学响应特征及位移变化情况。与传统大断面开挖方法进行同步解释,结果表明新方法在控制围岩稳定性方面具有优势。同时,为保证工程安全施工,利用自主研发的多功能交通隧道工程试验系统开展大型物理模型试验,模拟“拱墙式”交叉转换结构施工全过程响应特性。通过对测点数据分析,结果表明结构形式及开挖方法引起的地表沉降、应力、结构力均满足安全施工要求。最终在新的结构形式及施工方法下,车站可安全施工。因此本文提出的结构形式和方法可以适应复杂环境下在建的大型地下结构。
适应:在本报告中用作自然或社区为减少气候变化的有害影响而做出的一种调整 BEV:电池电动汽车 生物柴油:一种源自植物或动物的柴油燃料 生物燃料:源自生物质(如植物或藻类材料、木材或动物粪便)的燃料 生物质:一般在本报告中,我们提到的生物质均指木质生物质,木质生物质是任何木材衍生产品(软木或硬木),能够通过直接燃烧或气化转化为能量;通过制粒转化为固体燃料;或通过无数过程转化为液体燃料。生物质也可以是来自植物和动物的可再生有机物质。 蓝碳:被沿海生态系统(如盐沼、海藻和海草床)埋藏或隔离在大气之外的碳 碳中和:森林和其他生态系统对二氧化碳的吸收平衡了排放 清洁能源:利用可再生或低碳资源(如太阳能、风能、水能、生物质或地热能)生产电能或热能。清洁能源的广义定义中还可能包括提高能源产出或减少能源消耗的节能措施以及储能等创新电网技术。 CHP:热电联产 气候:特定地点在一段时间内的平均天气状况。例如,气象学家经常将其与 30 年的时间段进行比较,这被称为气候正常值。 气候变化:数十年或更长时间内的气候差异。长期的气候变化/转变可能是自然和人为因素造成的。 CPRG:碳污染减少补助金 DEP:缅因州环境保护部 DER:分布式能源资源。生产和供应电力或可控负载的小型资源,它们连接到本地配电系统或安装在主机设施中,可能分布在广阔的区域。这些资源要么为电网提供能源,要么允许更好地控制电力需求,并且位于电网系统的各个地理位置,有时位于“电表后面”。 EPA:环境保护局
摘要 本报告概述了美国能源部爱达荷国家实验室放射性废物管理综合体/地下处置区 CERCLA 清理过程,以及能源部如何损害爱达荷州水资源未来的政策决策。我们是如何走到今天这一步的,为什么能源部将危险的核废料埋在 INL 并称其“足够清洁”?能源部决定将 90% 的埋藏废物留在垃圾场,违反了 1995 年与爱达荷州达成的和解协议和联邦法院同意令,这违反了其清理近 70 年核遗留废物的承诺,对我们各州未来的安全用水构成了重大威胁。能源部的优先事项是花费超过 1 万亿美元建造新的核武器,而不是仅花费约 6 亿美元来清理上一次核生产遗留的巨大环境灾难。这代表了联邦政府对爱达荷州水资源未来的扭曲的重视和价值,这不符合任何健康和人权标准。本报告还审查了制定政策的《超铀废物处理环境补充分析》和 RWMC 的决策记录,因为它们都涵盖相同的政策领域,并且包含与 DOE 对 RWMC 管理不善相关的相同根本缺陷。EDI 的主要关注点是现有的遗留废物、旨在修复垃圾场的“加速回收计划”的问题(非法将混合危险/放射性废物留在原地)以及从其他 DOE 核电站向 INL 进口额外的 TRU 废物。处于危险之中的是底层的 Snake River 唯一水源含水层,大多数爱达荷州人现在和将来都将依赖它数千年。放射性和危险废物继续从这些埋藏的废物中迁移出来,污染了含水层;因此,如果没有法律要求的全面清理,能源部就会为了节省更多核武器的资金而损害爱达荷州的未来。混合放射性废物是世界上最危险和生物危险的物质。当能源部想要以比垃圾更少的环境保护(当微小颗粒可能导致死亡)来处理它时,公众必须采取行动,确保进行适当的清理,即使现任州领导不再像前州长安德鲁斯和巴特那样与能源部对抗。能源部继续表现出违反环境法、危险废物法规和 1995 年和解协议联邦法院同意令的一致模式。以下是示例:
本期特刊的主题“能源安全与向绿色能源生产的转型”在进行中就获得了令人不安的时效性。2022 年 2 月 24 日,俄罗斯入侵乌克兰,战争爆发,给欧洲的能源安全带来了前所未有的问题。一夜之间,欧洲能源供应对俄罗斯天然气的依赖变得显而易见。根据政治意愿,他们向绿色能源的过渡必须而且应该继续以更快的速度进行。欧洲不仅希望摆脱核能,而且希望摆脱天然气等不可再生能源,由于这一事件,这种转变必须加快速度。因此,我们特刊的时效性和重要性怎么估计都不过分。向绿色能源转型的想法当然比乌克兰战争更古老。尤其是在欧洲,政治参与者一直希望摆脱核能和不可再生能源,转向可再生能源。有几项政治倡议提出了向可再生能源的转变。最引人注目的是,欧盟 (EU) 于 2014 年 10 月通过了一项绿色协议(2018 年修订)。然而,美国也对此感兴趣,总统约瑟夫拜登推动了绿色新政 (GND)。该计划将投入数千亿美元用于旨在加速该国从主要依赖化石燃料的经济向利用清洁能源的经济转型的项目。这项立法被称为 2022 年通胀削减法案。如果该协议最终获得通过,在 10 年内,它将为建造新的无排放电力来源的公司提供数十亿美元的税收抵免。该计划将补贴风力涡轮机、太阳能电池板、电池储存、地热发电厂或先进的核反应堆。此外,还将为捕获和埋藏二氧化碳的公司以及电动汽车提供补贴。这项拟议的立法还包括在农业上支出以减少排放,以及在森林上支出以增加其对二氧化碳的吸收。对于这一转变来说,技术创新也很重要,这可能有助于铺平绿色能源的道路。尽管许多人认为核能是最便宜、最可靠的能源,尽管匈牙利计划建造新的核电站,绿色新政也包括对先进核反应堆的补贴,但德国等国家已经关闭了核反应堆。乌克兰战争爆发后,这在德国引发了一场重大讨论,讨论是否延长其剩余的三座核电站的使用寿命,这些核电站原定于 2022 年底关闭,以确保其能源安全。此外,德国和其他地方在 2022 年夏季推出了节能计划,以确保能源安全,尤其是冬季的能源安全。家庭遭受能源价格上涨的困扰,并且仍在继续。如果不向绿色能源转型,能源价格就不必上涨这么多,核电站也可以更好地确保能源安全。现在人们正在遭受苦难,许多人担心他们是否能够负担得起能源费用,或者他们是否会有任何