摘要:医疗器械是全球医疗保健系统的重要组成部分,对患者治疗有深远影响。因此,医疗器械必须是无菌的,以确保患者的安全。医疗器械上流行的微生物类型,也称为“生物负载”,是潜在污染源的有用指标。事实上,生物负载对患者来说是一种潜在风险,不仅因为灭菌过程可能不是完全有效的,而且由于可能存在残留物质,后处理也是如此。虽然可以通过破坏性灭菌过程自信地杀死生物负载,但应避免其在灭菌前增殖。为了测定生物负载,必须仔细选择培养基和培养条件。培养基对大多数微生物测试都至关重要:获得纯培养物、培养和计数微生物细胞以及培养和选择微生物。培养基主要由基本元素(水、营养物质)组成,必须添加针对每种细菌特定且对其生长必需的不同生长因子。如果没有高质量的培养基,获得准确、可再现和可重复的微生物测试结果的可能性就会降低。ISO 11737-1:2018“医疗保健产品灭菌-微生物学方法-第 1 部分:产品上微生物种群的测定”提出了测定和微生物表征生物负载的方法。然而,除了样品和培养时间之外,很少有关于培养基的指导。一些研究表明其他培养基也可能有效,例如平板计数琼脂 (PCA)。本综述的目的是关注可能影响生物负载评估的参数,特别是用于医疗器械上微生物检测的培养基类型。我们实验室进行的实验表明,PCA 似乎是检测医疗器械生物负载的最重要的介质;该介质也遵循 3R 规则。
预期用途 液体巯基乙酸盐培养基是一种用于无菌控制和培养苛刻厌氧和需氧微生物的液体培养基。 描述 液体巯基乙酸盐培养基是一种通用液体培养基,用于培养和分离苛刻厌氧和需氧微生物。它也可用作无菌测试的增菌培养基。该培养基符合美国药典 (USP)、欧洲药典 (EP) 和日本药典 (JP) 中统一方法的要求以及 ISO 7937 分离产气荚膜梭菌的要求。典型配方* (g/l) 酪蛋白酶解物 15.0 酵母提取物 5.0 葡萄糖 5.5 氯化钠 2.5 巯基乙酸钠 0.5 L-胱氨酸 0.5 刃天青 0.001 琼脂 0.75 最终 pH 值为 7.1 ± 0.2(25°C)
注释: *上面给出的示例被认为是非阐明的。*微生物介质的分类可以基于微生物介质的预期用途和类型(即一般或特定),关于微生物引起的微生物和严重性。更新了22/2/2024
差异化中性菌AremediaThatdisthatdisthatdistheDifferentGroupsofbacteriaandeven persitatientativativativativativativativativativativativativativativativativativative ofmicroganismissbaseedontheirbasedontheirbybiolbiologicalyceristical。Eg.,A).Bloodagarisbothadifferentialmediumandanenrichedone.Itdistinguishesbetween hemolyticandnonhemolyticbacteria.Hemolyticbacteria(e.g.,manystreptococciand staphylococciisolatedfromthroats)produceclearzonesaroundtheircoloniesbecauseofred bloodcelldestruction.
将细菌细胞分化为两个主要组:基于其细胞壁的特征,革兰氏阳性和革兰氏阴性。该方法是由Hans Christian Gram在1880年代开发的。有一个有关如何执行革兰事染色的分步指南:材料和试剂:1。细菌培养2。显微镜幻灯片3。Bunsen燃烧器或酒精灯4。接种环或无菌木棍5。水晶紫色染色6。gram的碘(碘 - 碘化物碘化物)溶液7。乙醇或异丙醇(酒精)8。safranin或Basic Fuchsin染色9。洗涤的水或乙醇10。显微镜程序:1。准备细菌涂片:
脑脓肿是脑实质中脓液的焦点集合,响应感染而被血管性的胶原胶囊包围(Brook,2017)。中枢神经系统(CNS)的其他频繁局灶性感染包括下硬膜下肌瘤和硬膜外脓肿(Dando等,2014)。脑脓肿的微生物组已被证明是多数型的,以牙源性起源的不可养殖和厌氧生物为主(Kommedal等,2014)。常规培养物选择性地分离有氧和兼性有氧运动,它们是脓肿中的次要成分,可能会超过临床上重要的生物(Kozlov等,2018)。此外,在脑脓肿中缺乏致病剂的生长可能是由于样品运输的延迟,细菌的挑剔性,接受抗生素治疗的患者中的细菌,样品中的细菌负荷低,或病毒/寄生虫病因(Lleo等人,2014年)。与文化无关
胶质母细胞瘤(GBM)是一种恶性和侵略性脑肿瘤,由于结构和细胞态在结构和细胞状态下,由于内部和肿瘤间异质性而难以治疗。GBM肿瘤的一个特征是围绕坏死核的缺氧利基存在。传统的体外模型(如单层和肿瘤培养物)衍生自患者样品的培养物并未概括这些特征,这可能会导致评估新的治疗策略的困难。将GBM细胞培养为类器官,可能会提供更好的方法来保留父肿瘤的表型,这是由于3D器官结构内存在明显的低氧和非催眠区域。在这里,我们提出了一种基于Hubert等人发表的方案,使用Neurocult™NS-A增殖介质从肿瘤培养物中产生GBM器官的方案。(2016)。1
指导•生产肥料,生长的培养基和生物修复产品:i)通过新鲜或干植物材料的分解; ii)处理干燥的植物材料; iii)来自加工植物产品的副产品,包括但不限于油种子粉(例如辣椒粉,棉花餐,芥末餐,印em餐,棕榈仁,大豆餐和蒸馏剂干谷物),棉花划分的副产品,果壳和地面坚果贝壳。•生长媒体的示例是蘑菇壳,加工后的泥炭盆,颗粒,碟片和插头。•用于包含可行微生物的产品; i)可以在HSNO批准登记册上搜索微生物的新生物体状态。如果未在HSNO批准登记册上列出微生物,则进口商可以联系EPA新生物体小组以获取进一步的建议。ii)可以在新西兰官方害虫注册
有关于使用双原子苯酚C 6 H 4(OH)2作为混凝土中钢加固的腐蚀抑制剂的信息。儿茶酚(Ortho -dihydroxybenzene)在抑制钢的三个异构体中具有最大的有效性。但是,其作用的机制尚未得到充分研究。在本出版物中,已经对具有高氯化物含量的混凝土孔液体中未合金钢的腐蚀行为进行了研究。研究了铂电极上阴极和阳极极化下儿茶酚的电化学行为。已经发现,在偏振曲线的阴极截面中,在有儿茶素的情况下,由于溶解氧的减少而导致的电流显着降低。具有比E = –170 mV(Ag/AgCl)更阳性的,观察到与儿茶酚的氧化以及其氧化产物不稳定扩散的表现相关的不对称峰。 从钢上的极化曲线来看很明显,儿茶酚有效地降低了氧气回收电流并影响氧化铁形式的比率(Fe(II)/Fe(II)/Fe(III),但不会影响钢在具有和不具有抑制剂 通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。 抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。 讨论了抑制剂效应的机制。,观察到与儿茶酚的氧化以及其氧化产物不稳定扩散的表现相关的不对称峰。从钢上的极化曲线来看很明显,儿茶酚有效地降低了氧气回收电流并影响氧化铁形式的比率(Fe(II)/Fe(II)/Fe(III),但不会影响钢在具有和不具有抑制剂 通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。 抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。 讨论了抑制剂效应的机制。通过线性极化抗性的方法,研究了儿茶酚浓度的腐蚀速率的动力学。抑制作用增加,添加剂浓度增加到1 g/L,并在5 g/l的儿茶酚中降低。讨论了抑制剂效应的机制。