通过康普茶微生物合成细菌纤维素在培养基上具有可变成分的养分成分Izabela betlej,Krzysztof J. Krajewski木材科学与木材保护系,木材技术学院,生命科学学院,科学科学摘要:细菌性纤维素纤维素合成,由knoboclocha micrororororgans of Nivients of Nivient of Nivient of Nivient of Nivient of Nivient of Animorororororerororerororerororormermismiss o an n a Indivients o and raimor of Animer of An I介绍。本文提出了评估各种蔗糖含量的影响的结果,以及康普茶微生物对合成效率和获得的细菌纤维素质量的生长培养基中各种氮化合物的存在。对获得的研究结果的分析表明,康普茶微生物合成纤维素合成的效率取决于生长培养基中可用的营养的数量和质量。关键词:细菌纤维素,康普茶,碳和氮源从化学的角度引入,细菌纤维素与植物纤维素相同,但是它具有比从植物组织中得出的纤维素更高的特征。首先,它的特征是高纯度,这是由于缺乏木质素和半纤维素,高结晶度,形成任何形状的易感性,高的吸湿性和非常高的机械强度以及高生物学兼容性[5,8,10]。这些功能保证了在各个行业使用细菌纤维素的绝佳机会。细菌纤维素已经成功地用于医学,作为敷料材料或外科植入物,作为生物传感器,以及食品,药房和造纸工业[7]。Fan等。Fan等。在造纸工业中,细菌纤维素主要用于漂白废纸,作为印刷缺陷的填充物[6]。在木工和包装行业中使用纤维素似乎也是潜在的。细菌纤维素是由细菌和酵母菌的大量微生物合成的。在纤维化微生物中,属于属的生物体:乙酰杆菌,动杆菌,achromobacter,achromobacter,agrobacterium,agrobacterium,psedomonas和sarcina [1]。这些微生物经常以企业化,生物膜的形式出现,通常被描述为“ Scoby”。尽管有许多独特的物理化学特征和非常有前途的应用观点,但在大规模上使用细菌纤维素会带来一些困难。这主要是由于生产成本仍然很高,生产率较低。高产量的合成产量不仅取决于培养方法,这与营养物质的可用性有关,还取决于微生物的动态相互作用。个体菌株的营养需求差异很大。Ramana和Singh [9]发现,乙型杆菌开发的最佳碳源,Nust4.1菌株,是葡萄糖,微生物和纤维素合成的生长进一步增加了,在存在硫酸钠的存在下,乙型甲基菌的生长,BRC菌株的生长,是乙醇,是乙醇的其他动态,是其他动态的。使用可变来源的碳和氮来对纤维素合成效率进行评估。[3]评估了底物上细菌纤维素的合成和质量,并增加了食品工业的废物。在这项工作中,尝试使用三种类型的培养基来评估通过包含的微生物菌株来评估细菌纤维素合成的效率,这些培养基的含量和氮源的可用性不同。
中将 R. Scott Dingle 美国陆军军医局长兼美国陆军医疗司令部指挥官 R. Scott Dingle 中将是美国陆军第 45 任军医局长兼美国陆军医疗司令部指挥官。在被任命为军医局长兼指挥官之前,他曾担任美国陆军医疗司令部副军医局长兼副指挥官(支援)。他曾担任的军事职务包括:大西洋区域卫生司令部指挥官;弗吉尼亚州福尔斯彻奇军医局长办公室 (OTSG) G-3/5/7 副参谋长;德国第 30 医疗旅指挥官;弗吉尼亚州福尔斯彻奇 OTSG 卫生保健行动/G-3 主任;肯塔基州诺克斯堡美国陆军医疗招募旅指挥官;北卡罗来纳州布拉格堡第 261 多功能医疗营指挥官;现行作战首席、特别计划官、医疗保健作战执行官、OTSG、弗吉尼亚州福尔斯彻奇;伊拉克自由行动多国军-伊拉克外科医生办公室医疗计划和行动首席,伊拉克巴格达;第 18 空降军外科医生办公室医疗计划和行动首席,北卡罗来纳州布拉格堡;第 261 区域支援医疗营 (44th MEDCOM) 执行官,北卡罗来纳州布拉格堡;伊拉克自由行动 CJTF -180 地面作战计划员,伊拉克巴格达;第 44 医疗司令部和第 18 空降军计划官、计划和演习助理参谋长,北卡罗来纳州布拉格堡;德国第 1 装甲师师级医疗作战中心主任;陆军医疗部中心和学校军官基础和高级课程教员,德克萨斯州萨姆休斯顿堡;德国第 3 步兵师医疗作战中心计划官;德国第 3 前线支援营 Charlie 连连长;弗吉尼亚州尤斯蒂斯堡医疗连和医疗支队连长;弗吉尼亚州尤斯蒂斯堡计划、作战、训练和安全主管;弗吉尼亚州尤斯蒂斯堡副官;肯塔基州诺克斯堡第 194 独立装甲旅第 75 前线支援营救护车排长和机动官。丁格尔中将毕业于摩根州立大学,成绩优异。他拥有中央密歇根大学管理学硕士学位、高级军事研究学院军事艺术与科学硕士学位和国家战争学院国家安全战略硕士学位。他获得的奖章和勋章包括杰出服务勋章(橡树叶簇)、功绩军团勋章(两枚橡树叶簇)、铜星勋章、功绩服务勋章(七枚橡树叶簇)、联合服务嘉奖勋章、联合功绩单位奖、陆军嘉奖勋章(两枚铜橡树叶簇)、陆军成就勋章(一枚铜橡树叶簇)、人道主义服务勋章、军事医疗功绩勋章、征兵员勋章、肯塔基上校勋章、陆军军医局长的著名 9A 级熟练度标记、法国荣誉军团勋章(骑士)、专家野战医疗徽章、跳伞员徽章和空中突击徽章。
2005 – 2011 年 担任德国波恩联邦国防部 S VI 3 空军“作战效能、生存力和防护”顾问以及德国波恩联邦国防部 S IV 3“联邦国防军民事军事合作”顾问
摘要。本文通过考虑布朗运动和多孔培养基在拉伸表面上考虑Sutterby Nanofluid,讨论了微生物活性的影响。嗜热效应是涉及平衡流体温度以产生改进结果的措施。我们将这些效果包括在模型中,以及其他一些参数,例如布朗运动和微生物活性。分层现象被考虑用于评估Sutterby Nanofluid水平片上热量的产生/吸收。在不可压缩的Sutterby纳米流体中进一步分析了多孔培养基和与微生物活性的化学反应。借助一些合适的相似性转换,我们模型的初始边界条件和管理部分微分方程被转换为普通微分方程和最终边界条件的耦合结构。光谱准共线化方法(SQLM)用于数值求解这些普通的微分方程,以评估我们模型中采用的各种参数的影响。分析了不同参数的图形表示,以获取流量,温度,溶质和微生物分布。还分析了身体感兴趣的系数,并显示出良好的结果。纳米流体参数的上升降低了流体的流量,同时增强了热分层现象的温度曲线和下降。该模型是聚合物熔体以及高聚合物分辨率的理想选择。Sutterby Nanofluid模型还结合了膨胀溶液和伪塑料的行为,这对各种工程过程和行业都有帮助。
摘要:石油产品是重要的环境污染物。这项研究旨在分离能够在含汽油和柴油燃料的培养基上生长的微生物。微生物。细菌分离株进行了表征和测试,含有10%至100%汽油和柴油燃料的浓度,以及50/50%和25/25/50%的组合(汽油/柴油/柴油/Mueller Hinton Broth)。结果表明,微生物分离株属于假单胞菌,芽孢杆菌,葡萄球菌,微球菌,黄酮细菌,静脉细菌,青霉菌,汉斯福德菌和替代性。假单胞菌属。和芽孢杆菌属。表明,两种产品的浓度都具有80%的浓度。但是,在该浓度和两种混合物上都没有发现生长。在整个研究中,已经表明,使用选择性筛选方法来对污染物生长的微生物可以带来生物修复的重要优势。