KENWOOD 产品由我们在日本、新加坡和中国的自有工厂生产,我们尽一切努力提高产品质量和可靠性。Kenwood Electronics Singapore (KETS) 不仅是收发器制造中心,还拥有自己的研发设施。工程师在从设计到生产的每个阶段都不断改进。事实上,员工对质量的坚定承诺为他们赢得了 2007 年的 MAXA 奖和 2008 年的创新卓越奖。我们实施了严格的测试,以验证 KENWOOD 产品是否符合或超过美国军用标准,以抵抗极端温度、水、灰尘、振动和冲击。它们还经过测试,以确保符合 IEC 的防尘防水 IP 标准。此外,除了遵守 RoHS 和 REACH 对有害物质的限制外,我们的设计和生产工程师还遵守一套更为严格的管理此类物质的内部规则,从而为环境提供更大的保护。
1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。 巨摩尔。 化学。 物理。 ,2023,224,2300122。 2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。1- Yeole,S。P。; Jadhav,P。S。; Joshi,G。M.表面活性剂改性石墨烯及其基于衍生物的聚合物纳米复合材料的最新情况 - 综述。巨摩尔。化学。物理。,2023,224,2300122。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。 碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。 中文J. Polym。 SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。2 Imtiaz,s。; Siddiq,M。; Kausar,A。; Muntha,S.T。; Ambreen,J。; Bibi,I。碳纳米管(CNT)增强聚合物和环氧纳米复合材料的制造,特性和应用的评论。中文J. Polym。SCI。 ,2018,36(4),445-461。 3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。 评论。 compos。 A部分appl。 SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。,2018,36(4),445-461。3 szeluga,u。; Kumanek,b。 Trzebicka,B。混合聚合物/纳米碳复合材料中的协同作用。评论。compos。A部分appl。SCI。 制造。 ,2015,73,204-231。 4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。SCI。制造。,2015,73,204-231。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。 通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。 碳,2021,173,1020-1040。 5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。4 Ke,K。; Yue,L。; Shao,H。Q。;杨,M。B。; Yang,W。; manas-zloczower,I。通过混合碳填充剂来增强聚合物纳米复合材料的电和压电性能:评论。碳,2021,173,1020-1040。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。 Nanoscale,2016,8(26),12977-12989。 6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。5刘,H。 Gao,J.C。; Huang,W。J。; Dai,K。; Zheng,G。Q。;刘C. T。; Shen,C。Y。; Yan,X。R。; Guo,J。; Guo,Z。H.带有协同碳纳米管和石墨烯双叶烯的电导导电感应聚氨酯纳米复合材料。Nanoscale,2016,8(26),12977-12989。6 Yu,L。M。; Huang,H。X. 使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。 聚合物,2022,247,124791。 7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。6 Yu,L。M。; Huang,H。X.使用碳纳米填料的热塑性聚氨酯纳米复合材料的流变行为的温度和剪切依赖性。聚合物,2022,247,124791。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。 polym。7 Aranburu,n。; Otaegi,i。; Guerrica-echevarria,G。融化混合生物的TPU纳米复合材料中的机械,电和粘合剂协同作用。polym。测试。,2023,124,108068。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。 ACS Nano,2022,16(2),1734-1758。 9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。8 Wang,Y。X。; Yue,Y。; Cheng,f。; Cheng,Y。F。; GE,B.H。; N. S. Liu; Gao,Y。H. Ti 3 C 2 t x基于MXENE的柔性压电物理传感器。ACS Nano,2022,16(2),1734-1758。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。 二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。 compos。 SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。9 Sheng,X。X。; Zhao,Y。F。;张,L。; lu,X。二维Ti 3 C 2 MXENE/热塑性聚氨酯纳米复合材料的性能,并通过熔体混合有效增强。compos。SCI。 技术。 ,2019,181,107710。 10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。技术。,2019,181,107710。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。 巨摩尔。 mater。 eng。 ,2020,305,2000343。 11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。10 Gao,Q。S。; Feng,M.J。;说谎。;刘C. T。; Shen,C。Y。; Liu,X。H. Ti 3 C 2 Tx Mxene/热塑性聚氨酯纳米复合材料的机械,热和流变特性。巨摩尔。mater。eng。,2020,305,2000343。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。 用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。 J.胶体界面科学。 ,2022,606,223-235。 12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。 Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。 compos。 A部分appl。 SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。11 Luo,Y。; Xie,Y。H。; Geng,W。; Dai,G。F。; Sheng,X。X。; Xie,D.L。; Wu,H。; Mei,Y。用官能化的MXENE制造热塑性聚氨酯,朝着高机械强度,阻燃剂和烟雾抑制特性。J.胶体界面科学。,2022,606,223-235。12刘c。 Shi,Y。Q。;是的他,J。H。; Lin,Y。X。; li,Z。; Lu,J.H。; Tang,Y。L。; Wang,Y。Z。; Chen,L。用次生磷酸盐功能化MXEN,以用于高度火灾的热塑性聚氨酯复合材料。compos。A部分appl。SCI。 制造。 ,2023,168,107486。 13陈梦杰,李志健,周宏伟,刘汉斌。 细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。 高分子学报,2023,54(11),1740-1752。 14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。 基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。SCI。制造。,2023,168,107486。13陈梦杰,李志健,周宏伟,刘汉斌。细菌纤维素增强的低共熔溶剂导电离子凝胶及柔性传感器。高分子学报,2023,54(11),1740-1752。14范强,苗锦雷,刘旭华,左杏薇,张文枭,田明伟,朱士凤,曲丽君。基于仿生mxene纤维导电网络的柔性透明电极及纤维导电网络的柔性透明电极及。高分子学报,2022,53(6),617-625。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。 acs appl。 mater。 接口,2022,14(13),15504-15516。 16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。15 Dong,H。; Sun,J.C。; Liu,X。M。; Jiang,X。D。; Lu,S。W.具有双层导电结构的高度敏感和可拉伸的MXENE/CNT/TPU复合应变传感器,用于人类运动检测。acs appl。mater。接口,2022,14(13),15504-15516。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。 ACS Nano,2021,15(6),9690-9700。 17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。16 Wang,H。C。; Zhou,R。C。; Li,D。H。;张,L。R。; Ren,G。Z。; Wang,L。; Liu,J.H。; Wang,D.Y。; Tang,Z。H。; lu,G。; Sun,G。Z。; Yu,H。D。; Huang,W。基于碳纳米管的高性能泡沫形状应变传感器和Ti 3 C 2 t x Mxene,用于监测人类活动。ACS Nano,2021,15(6),9690-9700。17 Su,F。C。; Huang,H。X. 具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。 acs appl。 mater。 接口,2023,15(48),56328-56336。 18田信龙,黄汉雄。 具有较高回弹性的poe基微孔复合材料的传感性能。 高分子学报,2023,54(2),235-244。17 Su,F。C。; Huang,H。X.具有快速响应的柔性开关压力传感器,弯曲敏感的性能较低,适用于疼痛感受模拟的手套。acs appl。mater。接口,2023,15(48),56328-56336。18田信龙,黄汉雄。具有较高回弹性的poe基微孔复合材料的传感性能。高分子学报,2023,54(2),235-244。
ACTN3 R577X多态性。 J锻炼营养生物化学。 2015; 19(3):157-64。 3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。ACTN3 R577X多态性。J锻炼营养生物化学。2015; 19(3):157-64。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。ACTN3 R577X基因型与日本人群中的肌肉功能有关。Appl Physiol Nutr Metab。2015; 40(4):316-22。4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。自然。2004; 429(6991):575-8。5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。nat Commun。2019; 10(1):4056。
202. 3) Wang, JY, Tuck, OT, Skopintsev, P., Soczek, KM, Li, G., Al-Shayeb, B., Zhou, J., & Doudna, JA (2023) 通过 CRISPR 修剪器整合酶进行基因组扩展。Nature,618,855 ‒ 861。4) Wang, JY, Pausch, P., & Doudna, JA (2022) CRISPR-Cas 免疫和基因组编辑酶的结构生物学。Nat. Rev. Microbiol. , 20 , 641 ‒ 656。5) Anzalone, AV、Randolph, PB、Davis, JR、Sousa, AA、Ko-blan, LW、Levy, JM、Chen, PJ、Wilson, C.、Newby, GA、Raguram, A. 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature,576,149 ‒ 157。6) Mehta, J. (2021) CRISPR-Cas9 基因编辑用于治疗镰状细胞病和β地中海贫血。N. Engl. J. Med.,384,e91。 7) Kapitonov, VV, Makarova, KS, & Koonin, EV (2015) ISC,一组编码 Cas9 同源物的新型细菌和古细菌 DNA 转座子。J. Bacteriol. ,198,797 ‒ 807。8) Altae-Tran, H., Kannan, S., Demircioglu, FE, Oshiro, R., Nety, SP, McKay, LJ, Dlakić, M., Inskeep, WP, Makarova, KS, Macrae, RK, et al. (2021) 广泛分布的 IS200/IS605 转座子家族编码多种可编程的 RNA 引导的核酸内切酶。 Science , 374 , 57 œ 65。9) Weinberg, Z., Perreault, J., Meyer, MM, & Breaker, RR (2009) 细菌宏基因组分析揭示的特殊结构化非编码 RNA。Nature , 462 , 656 œ 659。10) Hirano, S., Kappel, K., Altae-Tran, H., Faure, G., Wilkinson, ME, Kannan, S., Demircioglu, FE, Yan, R., Shiozaki, M., Yu, Z., et al. (2022) OMEGA 切口酶 IsrB 与 ω RNA 和靶 DNA 复合的结构。 Nature , 610 , 575 œ 581。11) Biou, V., Shu, F., 和 Ramakrishnan, V. (1995) X 射线晶体学显示翻译起始因子 IF3 由两个通过 α 螺旋连接的紧凑的 α/β 结构域组成。EMBO J. , 14 , 4056 œ 4064。12) Schuler, G., Hu, C., 和 Ke, A. (2022) IscB-ω RNA 进行 RNA 引导的 DNA 切割的结构基础以及与 Cas9 的机制比较。 Science,376,1476 ‒ 1481。13) Bravo, JPK、Liu, MS、Hibshman, GN、Dangerfield, TL、Jung, K.、McCool, RS、Johnson, KA 和 Taylor, DW (2022) CRISPR-Cas9 错配监测的结构基础。Nature,603,343 ‒ 347。14) Aliaga Goltsman, DS、Alexander, LM、Lin, JL、Fregoso Ocampo, R.、Freeman, B.、Lamothe, RC、Perez Rivas, A.、Temoche-Diaz, MM、Chadha, S.、Nordenfelt, N. 等人 (2022) 从未培养的微生物中发现用于基因组编辑的紧凑型 Cas9d 和 HEARO 酶。Nat. Commun. ,13,7602。
赫林·沃伦表示,该委员会将调查学生对《行为准则》的责任水平;一个总统住宿生活委员会,负责处理宿舍计划以及结构和设施;以及一个校园委员会,研究司法系统。另一个问题是:“小组成员是否觉得对学院的冷漠态度越来越强烈?”虽然对这个问题有几种回答。霍利迪院长表示希望伍斯特学生不要接受对自己的负面形象。她认为伍斯特学院的学生是一个“特殊”学生。小组还被问及管理层如何评估学生雇员。答案是,学生雇员每季度进行一次评估,评估依据是他们履行雇佣合同的程度。给出的一个具体例子是 RA 对《行为准则》的责任。
Herring Wtmrrinn tAhioH uill 将调查 Sntoetl。门控学生对行为准则的责任水平;一个总统住宿生活委员会,处理宿舍计划以及结构和设施;以及一个校园委员会委员会,研究司法系统。提出的另一个问题是:“小组成员是否觉得对学院的冷漠态度日益加深?”虽然对这个问题有几种回应。院长霍利迪表示希望伍斯特学生不要接受自己的负面形象。她觉得 COW 学生是一个“特殊”学生。小组还被问及管理层如何评估学生员工。答案是,学生雇员每季度接受一次审查,审查依据是其雇佣合同的履行程度。给出的一个具体例子是 RA 的《守则》责任
赫林·沃伦表示,该委员会将调查学生对《行为准则》的责任水平;一个总统住宿生活委员会,负责处理宿舍计划以及结构和设施;以及一个校园委员会,研究司法系统。另一个问题是:“小组成员是否觉得对学院的冷漠态度越来越强烈?”虽然对这个问题有几种回答。霍利迪院长表示希望伍斯特学生不要接受对自己的负面形象。她认为伍斯特学院的学生是一个“特殊”学生。小组还被问及管理层如何评估学生雇员。答案是,学生雇员每季度进行一次评估,评估依据是他们履行雇佣合同的程度。给出的一个具体例子是 RA 对《行为准则》的责任。
赫林·沃伦表示,该委员会将调查学生对《行为准则》的责任水平;一个总统住宿生活委员会,负责处理宿舍计划以及结构和设施;以及一个校园委员会,研究司法系统。另一个问题是:“小组成员是否觉得对学院的冷漠态度越来越强烈?”虽然对这个问题有几种回答。霍利迪院长表示希望伍斯特学生不要接受对自己的负面形象。她认为伍斯特学院的学生是一个“特殊”学生。小组还被问及管理层如何评估学生雇员。答案是,学生雇员每季度进行一次评估,评估依据是他们履行雇佣合同的程度。给出的一个具体例子是 RA 对《行为准则》的责任。