复合材料是一种先进的材料,其设计结合了其组成相的最佳性能,从而具有优异的机械、热和化学特性。它们由充当粘合相的基质材料和增强复合材料整体性能的增强材料组成。基于基质材料的复合材料分类提供了一种了解其行为和应用的系统方法。主要分类包括聚合物基质复合材料 (PMC)、金属基质复合材料 (MMC) 和陶瓷基质复合材料 (CMC)。每种基质材料都有不同的特性:PMC 重量轻且耐腐蚀,但热稳定性有限;MMC 具有高强度、热导率和韧性,但较重且易腐蚀;CMC 具有出色的耐热性和耐磨性,但易碎且生产成本高。本文深入讨论了这些分类,重点介绍了它们的成分、特性、优势、局限性以及在各个行业中的应用。通过强调基质材料的重要性,本研究旨在为特定工程应用的复合材料的设计、选择和优化提供见解。
拟议的行动(或上述理由中定义的提案部分)属于 10 CFR 第 1021 部分 D 分项附录 A 或 B 中所列的行动类别。为了符合 10 CFR 第 1021 部分 D 分项附录 B 中所列的行动类别,提案必须符合以下要求:(1) 不会威胁违反适用的环境、安全和健康法定、监管或许可要求,或 DOE 或行政命令的类似要求;(2) 要求选址和建造或大规模扩建废物储存、处置、回收或处理设施(包括焚化炉),但提案可以包括明确排除的废物储存、处置、回收或处理行动或设施;(3) 扰乱环境中预先存在的危险物质、污染物、污染物或 CERCLA 排除的石油和天然气产品,从而导致不受控制或未经许可的排放; (4)有可能对环境敏感资源造成重大影响,包括但不限于《10 CFR》第1021部分D分部附录B第B(4)段所列的资源;(5)涉及转基因生物、合成生物学、政府指定的有害杂草或入侵物种,除非拟议活动在设计和操作上受到遏制或限制,以防止未经授权释放到环境中,并按照适用要求进行,例如《10 CFR》第1021部分D分部附录B第B(5)段所列的要求。
摘要:提出一种基于制造约束和基体设计的激光定向能量沉积增材制造(DED AM)产品残余应力控制新方法。残余应力的模拟结果与实验测量数据进行了验证。结果表明,减弱基体上的约束可以大大降低激光DED AM产品中的残余应力。此外,通过在基体上设计局部减薄区域,如长条形孔或支撑腿,可以进一步降低DED AM产品的残余应力。在本研究中,当基体上设计长条形孔时,拉残余应力降低了28%。当设计结构改为支撑腿时,残余应力更小。拉残余应力降低了30%以上。支撑腿越少,残余应力越小。DED AM产品的残余应力可以通过设计得到很好的控制,同时可以通过减少约束来削弱刚度。
摘要:本研究采用激光定向能量沉积在 TiNi 形状记忆合金基体上构建富 Ti 三元 Ti-Ni-Cu 形状记忆合金,实现多功能双金属形状记忆合金结构的连接。采用经济高效的 Ti、Ni 和 Cu 元素粉末混合物作为原材料。采用各种材料表征方法来揭示两部分不同的材料特性。制备的 Ti-Ni-Cu 合金微观结构以 TiNi 相为基体,Ti 2 Ni 二次沉淀物。硬度没有显示出高值,表明主相不是硬质金属间化合物。通过拉伸试验获得了 569.1 MPa 的结合强度,数字图像相关揭示了两个部分不同的拉伸响应。使用差示扫描量热法测量相变温度。测得 Ti-Ni-Cu 合金截面的奥氏体终轧温度高于 80 ◦ C。对于 TiNi 基体,经测试,奥氏体终轧温度在底部接近 47 ◦ C,在上部基体区域约为 22 ◦ C,这是由于重复的激光扫描对基体起到了退火作用。最后,对两个形状记忆合金侧面的多重形状记忆效应进行了测试和识别。
复合材料的热性能通常会因基体和增强材料之间的热膨胀不匹配而产生不同的影响。从基体无应力的原始制造温度冷却时,会产生内部应力,这取决于冷却计划、增强材料的类型及其分散性。随后重新加热以确定热物理性能时,随着基体或其增强材料发生应力松弛,内部应力场会发生变化。在某些情况下,这些变化会导致新的稳定尺寸,但在其他情况下,热循环会导致应变棘轮,随着材料逐渐疲劳,长度会逐渐增加或减少。因此,通过测量热物理特性来表征材料的稳定性是确定整体材料性能的关键方面。
碳纤维碳复合材料 (CFC) 也称为碳纤维增强碳复合材料 (CFRC),是一种由碳纤维和碳基体制成的先进材料。它结合了两种碳基体的理想特性。碳基体(耐热、耐化学性、低热膨胀系数、高热导率、低电阻)和碳纤维(高强度、高弹性模量)模制在一起,形成更好的组合材料。
通过热压粉末混合物,我们制造了三种以氧化铝基体为基础、体积百分比为 20% 的延展性金属(镍或铁)颗粒的复合材料。压痕和双扭转试验均表明,所有复合材料的韧性均高于母体基体,增幅从 22% 到 78% 不等。尽管压痕试验可以指示相对性能,但已概述了使用此方法的问题。对来自不同加工路线的氧化铝-铁样品进行的双扭转试验结果表明了微观结构的重要性。还指出,每种复合材料的最大韧性仅在裂纹长度相对较长(毫米级)时才实现。对裂纹轮廓的检查表明,颗粒-基体界面较弱,界面强度的提高将进一步提高复合材料的韧性。
图2为直接能量沉积过程中单通道单层熔覆层的外观图及相应时刻的熔池XZ截面和YZ截面图(红色虚线框内为XZ截面,黑色虚线框内为YZ截面)。从图2(a)可以看出,t=0.13时基体处于预热状态,这是为了保证粉末颗粒在熔池中初步完全熔化。由图可知,热源作用于基体时,基体受热比较均匀,热影响区具有很高的对称性,说明高斯热源在数值模型中具有良好的效果。随着金属粉末颗粒进入熔池,熔覆层逐渐形成,熔池最高温度可达3000K左右,如图2(b)所示。
由于严格的环境法规,使用增材制造工艺修复和再制造机械零件引起了广泛关注。定向能量沉积 (DED) 被广泛用于改造机械零件。在本研究中,进行了有限元分析 (FEA),以研究基材相和倾斜角对通过 DED 沉积的哈氏合金 X 区域附近传热特性的影响。设计了考虑焊珠尺寸和图案间距的 FE 模型。采用平面高斯分布的体积热源模型作为 DED 的热通量模型。基材和沉积粉末分别为 S45C 结构钢和哈氏合金 X。在进行 FEA 时考虑了温度相关的热性能。研究了基材相和倾斜角对沉积区域附近温度分布和热影响区 (HAZ) 深度的影响。此外,还研究了沉积路径对 HAZ 深度的影响。分析结果用于确定合适的基底相位和倾斜角度以及适当的沉积路径。