摘要:热机械特性高度依赖于定向能量沉积 (DED) 工艺的沉积策略,包括沉积路径、道间时间、沉积体积等,以及基材的预热条件。本文旨在通过有限元分析 (FEA) 研究沉积策略和预热温度对采用 DED 工艺沉积在 AISI 1045 基材上的 Inconel 718 高温合金热机械特性的影响。针对不同的沉积策略和预热温度建立了 FE 模型来研究热机械行为。采用 16 种沉积策略进行 FEA。通过比较实验和 FEA 的温度历史来估算热沉系数,以获得合适的 FE 模型。研究了沉积策略对设计的小体积沉积模型中残余应力分布的影响,以确定可行的沉积策略。此外,还研究了沉积策略和预热温度对大体积沉积设计部件残余应力分布的影响,以预测合适的DED头沉积策略和合适的基体预热温度。
2 m 表示 6-31G 基体中氢分子的轨道,连接在三根引线之间;一根输入引线和两根输出引线,用于不同的引线-分子耦合强度。图示显示了该设置,其中显示的分子轨道是 6-31G 基体中 H 2 的四个轨道,它们以耦合强度 V n ,p 连接到引线上。引线上的量子点标记为 ( n , i ),其中 n 和 i 分别表示引线和位点,我们将量子点距离设置为 a = 0 . 1 ˚ A。
如今,客户对其产品的要求非常严格。例如,新材料组合具有一些传统材料(如金属合金)无法单独满足的性能。为了满足航空航天、建筑、汽车、海事、风能和国防工业等大型领域的这些需求,最近开发了材料。由于研发项目,许多市场应运而生。复合材料在这些市场中占据了重要地位。复合材料是由两种或多种宏观上具有不同物理或化学性质的成分组合而成的材料。组成复合材料的成分大多保持其化学、物理和机械性能 [1]。复合材料生产的目的是为材料添加无法单独实现的新性能。这些材料不能相互溶解。复合材料由三个独立的部分组成。它们是基体、增强材料和界面。界面是基体和增强材料之间提供接触的区域。基体可以由塑料、金属和陶瓷材料制成。它通过防止增强元件在复合材料结构内独立移动并将负载转移到增强元件上,将纤维结构保持在一起。它包裹增强元件并赋予复合材料形状 [2]。
采用溶剂铸造法,以铁屑废料为填料,开发聚苯乙烯复合材料,旨在提高机械、晶体学和微观结构性能,以满足特定用途。根据 ASTM D638-10 标准进行拉伸试验。还进行了 X 射线衍射 (XRD) 分析和微观结构分析。杨氏模量随填料浓度 (0 – 15 wt%) 的增加而增加 (从 335.2 N/mm 2 增加到 1131.3 N/mm 2 ),断裂伸长率则反之亦然 (从 4.9 mm 增加到 1.6 mm)。XRD 显示,铁屑颗粒和聚苯乙烯基树脂 (PBR) 基质之间存在良好的结构相互作用。该复合材料分别结合了聚苯乙烯和铁屑的无定形和晶体性质。也没有观察到化学反应,但聚苯乙烯基体中形成了协同结构增强。微观结构分析表明,铁屑颗粒在聚苯乙烯基体中分散性良好,分布均匀;填料质量分数为15%的复合材料界面黏附性最好,颗粒-基体体系的混合比例适宜。
研究了铸态和T6态金属盐反应制备的TiB2颗粒增强A356基复合材料的组织与力学性能。对制备的复合材料的显微组织观察表明,原位生长的TiB2颗粒形状规则,在A356基体中分布均匀,A356基体与TiB2颗粒之间有清晰的界面。对铸态和T6态制备的复合材料的力学性能进行详细分析表明,随着A356基体中原位TiB2颗粒质量分数(wt%)的增加,制备的复合材料的极限拉伸强度和杨氏模量增大,但随着TiB2颗粒质量分数的增加,制备的复合材料的泊松比减小。与A356合金相比,随着TiB 2 颗粒质量分数的增加,复合材料的杨氏模量提高了10.8%,泊松比降低了3.2%;随着TiB 2 颗粒质量分数的增加,复合材料的屈服强度先降低(当TiB 2 颗粒质量分数小于1%时)后升高,而伸长率和断面收缩率则先升高后降低。此外,T6热处理可以细化晶粒,有效提高复合材料的力学性能。
动基体是单细胞鞭毛虫,其名称来源于“动基体”,这是单个线粒体内的一个区域,其中包含高 DNA 含量的细胞器基因组,称为动基体 (k) DNA。这种线粒体基因组的一些蛋白质产物被编码为隐基因;它们的转录本需要编辑才能生成开放阅读框。这是通过 RNA 编辑实现的,其中小调控向导 (g)RNA 指导在特定转录本区域内的每个编辑位点正确插入和删除一个或多个尿苷。很难准确了解动基体中 kDNA 的扩展及其独特的尿苷插入/删除编辑的进化。在这里,我们解析了早期分支动基体锥虫中的 kDNA 结构和编辑模式,并将它们与研究较为深入的锥虫进行比较。我们发现它的 kDNA 由约 42 kb 的环状分子组成,这些分子包含 rRNA 和蛋白质编码基因,以及 17 个不同的约 70 kb 的重叠群,每个重叠群平均携带 23 个假定的 gRNA 位点。这些重叠群可能是线性分子,因为它们包含重复的末端。我们的分析发现了一个具有独特长度和序列参数的假定 gRNA 群体,相对于这种寄生虫的编辑需求而言,这个群体是巨大的。我们验证或确定了四个编辑的 mRNA 的序列身份,包括一个编码 ATP 合酶 6 的 mRNA,该 mRNA 之前被认为缺失。我们利用计算方法表明,T. borreli 转录组包含大量具有不一致编辑模式的转录本,显然是非规范编辑的产物。与其他研究的动基体相比,该物种利用了最广泛的尿苷缺失来加强隐基因产物的氨基酸保守性,尽管插入仍然更频繁。最后,在三个经过测试的动质体线粒体转录组中,原始线粒体读段中尿苷缺失比与完全编辑的、具有翻译能力的 mRNA 对齐更常见。我们得出结论,kDNA 在已知动质体中的组织代表了编码 mRNA 和 rRNA 的环状分子的分区编码和重复区域的变异,而 gRNA 基因座位于高度不稳定的分子群中,这些分子在不同菌株之间的相对丰度存在差异。同样,虽然所有动质体都具有保守的机制来执行尿苷插入/缺失类型的 RNA 编辑,但其输出参数是物种特异性的。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creative-commons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
焊点绝不是均匀结构。焊点由多种截然不同的材料组成,其中许多材料仅具有表面特征。焊点由以下部分组成:(1) PWB 上的基体金属;(2) 焊料成分(通常为锡 (Sn))与 PWB 基体金属的一种或多种金属间化合物 (IMC)(固体溶液);(3) 形成 PWB 侧 IMC 的焊料成分已被耗尽的层;(4) 焊料晶粒结构,由至少两个包含不同比例焊料成分的相以及任何有意或无意的污染物组成;(5) 形成元件侧 IMC 的焊料成分已被耗尽的层;(6) 焊料成分与元件基体金属的一个或多个 IMC 层;以及 (7) 元件上的基体金属。
高性能碳化钨切削刀具由坚韧的钴基体制成,将坚硬的碳化钨颗粒粘合在一起;性能较低的刀具可以使用青铜等其他金属作为基体。 一些坦克装甲可能由金属基复合材料制成,可能是用氮化硼增强的钢,氮化硼是一种很好的钢增强材料,因为它非常坚硬,不会溶解在熔融的钢中。 一些汽车盘式制动器使用 MMC。早期的 Lotus Elise 车型使用铝 MMC 转子,但它们的热性能不太理想,Lotus 后来又改用铸铁。现代高性能跑车(例如保时捷制造的跑车)使用碳纤维转子,碳化硅基体具有高比热和导热性。3M 开发了一种预制铝基插入件,用于加强铸铝盘式制动钳,[7] 与铸铁相比,重量减轻了一半,同时保持了相似的刚度。3M 还将氧化铝预制件用于 AMC 推杆。[8] 福特提供金属基复合材料 (MMC) 传动轴升级。MMC 传动轴由碳化硼强化的铝基制成,可通过减小惯性来提高传动轴的临界转速。MMC 传动轴已成为赛车手的常见改装,可使最高速度远远超过标准铝制传动轴的安全运行速度。
本研究首次研究了通过选择性激光熔化 (SLM) 直接在由 SLM 生产的 IN625 基体上生产 NiCrAlY 粘结涂层材料的可行性。通过改变激光功率 (P) 和扫描速度 (v) 进行了典型参数优化。对 15 种不同的 P/v 条件进行了单线扫描轨迹和双层涂层分析。定义了几个标准来选择合适的 SLM 参数。结果表明,底层基体发生了明显的重熔,这是 SLM 制造的典型特征。这导致了中间稀释区的形成,其特征是 IN625 高温合金基体和 NiCrAlY 粘结层之间发生了大量混合,表明冶金结合优异。最佳加工条件为 P = 250 W 和 v = 800 mm/s。它产生了一个致密的 242 μm 厚的粘结层,其中包括一个 36% 的稀释区。 SLM 加工的 <NiCrAlY- IN625> 系统呈现出平滑的显微硬度分布,从粘结层的 275 Hv 略微增加到基材的 305 Hv。在系统中发现相之间的 Al 浓度分布逐渐增加,残余应力水平较低。这表明 SLM 可能是一种有价值的替代制造工艺,用于粘结层系统,从而促进高温应用中的出色附着力。
采用粉末冶金法合成金属基纳米复合材料,以二氧化铈 (CeO 2 ) 纳米粒子 (1、2、3、4 wt.%) 作为增强体,包含在铝 (Al) 金属基体中。研究了铝的结构和力学性能随增强 CeO 2 纳米粒子浓度的变化。采用共沉淀技术合成二氧化铈纳米粒子,其结构为面心立方 (fcc),平均晶粒尺寸为 12.80 nm。纳米复合材料的结构分析证实了 CeO 2 纳米粒子在铝基体中均匀分散。由于 CeO 2 纳米粒子的存在,铝的硬度值有显著提高,当铝基体中 CeO 2 的含量为 2 wt.% 时,硬度值最大,同时与纯铝相比,Al-CeO 2 纳米复合材料的磨损有所增加。腐蚀分析也证实了 Al-CeO 2 纳米复合材料耐腐蚀性能的提高,当 Al 基质中 CeO 2 的含量为 4 wt.% 时,耐腐蚀效率最高为 83.75%。