(1)声发射系统 (2)超声波脉冲接收器 (3)可变光衰减器 (4)闭环低温恒温器(无低温恒温器),基准温度为 1.5 K,配有集成测量电子设备 (5)原子力显微镜(AFM) (6)带有超导磁体和可变温度插件(VTI)的低温恒温器,带有 RF/MW 接线和光耦合器,温度范围为 1.5 K-300 K (7)光学分束器 (8)光纤耦合硅雪崩光电二极管 (9)红外波长范围自由运行单光子探测器(InGaAs-APD) (10)加热和冷冻室
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
1. 使用哪种能源估算方法(例如,修正度日、可变基准度日、ASHRAE 箱、ASHRAE 修正箱)。 2. 使用哪种气候数据格式(例如,度日、箱或每小时数据)?如果使用度日气象数据,使用什么基准温度以及为什么?不同的分受助者使用哪些气象数据站点? 3. 住宅单元的现有能源使用和能源需求是根据实际能源账单、普遍接受的工程计算还是两者确定的? 4. 能源审计是否解决了所有重要的供暖和制冷需求? 5. 如何估算传导、对流和辐射热损失(或增益)? 6. 能源估算方法如何处理来自内部来源的显热和潜热增益? 7. 在审计期间,如何估算预风化和后风化期间供暖和制冷设备的能耗(例如,稳态效率、部分负荷曲线)? 8. 能源估算方法如何使用鼓风机门读数和其他测试结果(例如管道泄漏)?9. 能源审计软件如何处理生活热水和/或家用电器测量?10. 估计的燃料/能源成本节省是否折算为净现值?11. 对于多户型审计,审计使用哪些内部验证功能(例如使用实际能耗对模型进行校正)来验证每次审计,或者受让人如何确保建筑物模型正确?
完整的实验装置如图 S1 所示。超导量子比特遵循文献 [1] 中描述的“3D transmon”设计。单个铝制约瑟夫森结与蓝宝石衬底上的两个 0.4 x 1 毫米天线相连,嵌入空的铝块腔中,固定在稀释制冷机的 20 mK 基温下。transmon 芯片采用电子束光刻、双角蒸发和氧化工艺制成隧道结。光谱测量得出量子比特频率 ν q = 5 . 19 GHz,与下一个跃迁相差非谐性 α/ 2 π = 160 MHz。测得的弛豫时间为 T 1 = 16 µ s,拉姆齐时间为 T 2 = 10 . 5 µ s。读出和驱动脉冲由微波发生器产生的两个连续微波音调的单边带调制产生,微波发生器分别设置在 ν c 0 + 62 . 5 MHz 和 ν q + 62 . 5 MHz,其中 ν c 0 = 7 . 74 GHz 是高功率下的腔体频率(图 S3.a)。调制是通过将这些连续波与 62.5 MHz 的脉冲正弦信号混合来完成的,后者由 4 通道泰克任意波形发生器的两个不同通道合成。所有源均由原子钟同步。两个脉冲合并并通过输入线发送到腔体的弱耦合输入端口,输入线在稀释制冷机的各个阶段用低温衰减器进行滤波和衰减,确保进入设备的热激发可以忽略不计。在静止阶段 (850 mK) 使用商用 (来自 K&L) 低通净化滤波器,截止频率为 12 GHz,而在基准温度下插入自制低通滤波器,该滤波器由封闭在装有 Eccosorb 的红外密封盒中的微带线组成。请注意,图 S1 中表示为“反射探针”的类似线已用于现场估计腔体输入和输出耦合率 Γ a,b = γ a,b