解决方案ESRB-12 - 在第E-4184号决议中修改/替换电动事件报告要求的决议和一般订单的调查要求(GO)95和GO128。结果:修改投资者拥有的电力公用事业(公用事业)的事件报告要求,以阐明当前的报告要求,消除令人困惑的语言,并使所有公用事业之间的解释和应用程序保持一致。安全考虑因素:改善委员会员工如何监控和调查电动事件,并分配正确调查此类事件所需的资源。估计的成本:无需大量费用。裁决(D.)06-04-055的摘要和背景,加利福尼亚公共事业委员会(委员会)要求投资者拥有的公用事业(称为“公用事业”)通过电话或Facsimile事件向委员会工作人员报告符合特定标准的委员会。决议E-4184,于2008年8月21日批准,修改了D.06-04-055,并为公用事业提出了其他要求向委员会报告事故的要求。一般订单(GOS)95和128要求公用事业为符合某些标准的安全性电动事件建立调查程序。决议E-4184修订了D.06-04-055,通过增加必须发生的损坏阈值,以便将电动事件从20,000美元报告到50,000美元,并要求在两个小时内进行事件而不是60天。决议E-4184还建立了一个新的基于Web的报告系统,该系统允许公用事业使用指定的事件报告的佣金网页报告事件。此决议更新并修改了决议E-4184中建立的电气事件报告要求以及一般的事件调查要求
•在这33个方案中,有32个用于为电力部门设定目标,仅选择具有区域分辨率的数据,足以使模型的建模途径到达国家 /地区。通过缩小这些方案,我们能够进一步调整国家和全球发电的基准,这些基准更有效地考虑了与电力部门脱碳相关的公平性和可行性约束。此过程在第0节中详细介绍。•这33个方案中有24个用于为建筑物的设定目标。模型途径中的数据限制意味着我们不能遵循与电力部门采用的类似方法。取而代之的是,我们在33个场景中应用了一个更简单的过滤器,并且仅保留了2020年至2030年间温室气体排放率下降速度的发达国家比在发展中国家更陡峭的情况。第4.4.2节中详细介绍了进一步的方案选择。•减轻气候变化以及部署碳去除技术的能力的责任因国家而变化很大。所有33个方案均用于设定去除技术碳的目标,鉴于与将变暖限制为1.5°C所需的技术碳去除幅度相关的大型不确定性以及扩展这些方法的可行性(Grant等人。 ,2021)。 该决定反映了捕获最广泛的观点范围的重要性,即技术碳去除可以在实现巴黎协议温度目标方面发挥的作用,同时保持文献定义的可持续性约束。,2021)。该决定反映了捕获最广泛的观点范围的重要性,即技术碳去除可以在实现巴黎协议温度目标方面发挥的作用,同时保持文献定义的可持续性约束。未来的分析可以探讨将股权关注纳入分析的方式如何影响二氧化碳去除技术的全球部署。
摘要 — 大型语言模型 (LLM) 的迅速普及和新兴能力激发了公众对评估和比较不同 LLM 的好奇心,导致许多研究人员提出了自己的 LLM 基准。注意到这些基准中存在初步不足,我们着手开展一项研究,通过人员、流程和技术的视角,在基准功能和完整性的支柱下,使用我们新颖的统一评估框架,对 23 个最先进的 LLM 基准进行批判性评估。我们的研究发现了重大的局限性,包括偏见、衡量真实推理的困难、适应性、实施不一致、工程复杂性、评估者多样性以及在一次全面评估中忽视文化和意识形态规范。我们的讨论强调了在人工智能 (AI) 进步的背景下,迫切需要标准化方法、监管确定性和道德准则,包括倡导从静态基准演变为动态行为分析,以准确捕捉 LLM 的复杂行为和潜在风险。我们的研究强调了法学硕士评估方法范式转变的必要性,强调了合作努力对于制定普遍接受的基准和增强人工智能系统融入社会的重要性。
抽象在中层和下热层中增加二氧化碳浓度正在增加辐射冷却,从而导致热圈收缩和固定高度下的中性质量密度降低。对历史中性密度趋势的先前研究表明,对太阳活性有依赖性,较大的F10.7值导致中性密度降低。为了研究对未来热层的影响,使用电离层和热层扩展的整个大气社区气候模型已用于模拟在增加二氧化碳浓度和变化的太阳能活动条件下的热层。这些中性密度降低已被映射到政府间气候变化委员会发表的共享社会经济途径上。中性密度降低也可以用作缩放因素,从而使常用的经验模型可以考虑CO 2趋势。在“最佳情况”下,SSP1-2.6场景下,与2000年相比,在400 km高度峰值(当CO 2 = 474 ppm时)的中性密度降低(当CO 2 = 474 ppm时)以13%–30%的降低(分别低于太阳能和低太阳能活动)。较高的CO 2浓度导致更大的密度降低,最大的建模浓度为890 ppm,在高太阳能活动下,在400 km时分别减少了50%–77%的浓度。
南大洋为全球海洋热量和碳吸收提供了主要的贡献,这被广泛解释为其独特的上升和循环。在这里,我们在这些贡献中显示出很大的不对称性,而在最先进的气候模型中,南方海洋占全球热量吸收的83±33%,而全球海洋碳吸收的43±3%。使用单个辐射强迫实验,我们证明了这种历史不对称是由于增强的气溶胶强迫抑制了北部海洋的热量吸收。在未来的预测中,例如SSP2-4.5,温室气体越来越主导辐射强迫,南大洋对全球热量和碳吸收的贡献分别更为可比性,分别为52±5%和47±4%。因此,过去不是未来的可靠指标,北部海洋对于热量吸收而变得重要,而南部海洋对于热量和碳吸收都至关重要。
1.5°C一致的公司基准的存储库旨在巩固在现有文献,倡议和法院为每个部门的裁决中确定的广泛的脱碳基准和里程碑。这种做法承认建立1.5°C一致的基准的多种方法,以告知公司气候行动,而不是主张一种单数方法。确定基准和里程碑的方法范围在潜在的排放场景及其对二氧化碳去除碳和温度范围的假设方面可能有所不同,涵盖了公司沿着价值链的排放范围,或者沿着价值链的排放范围,或其对绝对或强度发射的指标降低或非GHG相关的副标题。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
肠道微生物群的组成是各种疾病中的已知因素,事实证明是疾病状态自动分类的强大基础。需要在功能规模上更好地理解这个社区,因为这将增强这些APARACHES的生物解释性。在本文中,我们开发了一种计算管道,用于将肠道菌群的功能注释与自动分类过程相结合,并促进对其结果的下流解释。该过程作为输入分类组成数据(例如操作分类单元表(OTU)或Amplicon序列变体(ASV)丰度),并通过询问Uniprot数据库来将每个组合链接到其功能注释。肠道微生物群的功能性是由此基础构建的。二个pro纤维,微生物和功能性,用于训练随机的森林分类器,以辨别不健康的控制样品。然后根据可变的重要性进行自动选择,并且可以迭代该方法,直到分类性能降低为止。此过程表明,与微生物pro纤维相比,微生物群体转化为功能性纤维可比性,尽管表现略有下相比。通过重复,它还输出了一个强大的判别变量子集。这些选择比通过最先进的方法获得的选择更可靠,并且通过手动书目研究验证了其内容。还分析了选定的OTU和功能注释之间的互连,并揭示了重要的注释来自非选择OTU的累积影响。
1个神经科学计划,纽约市高级科学研究中心(CUNY)研究生中心,纽约,纽约,纽约,10031,美国。2生物学研究生课程,CUNY研究生中心,纽约,纽约,纽约10031,美国。 3,加拿大维多利亚州维多利亚大学医学科学系。 4约翰·霍普金斯大学医学院神经病学系,巴尔的摩,马里兰州21287,美国。 5眼科与视觉科学系,密歇根大学密歇根大学凯洛格眼中中心,密歇根州安阿伯,密歇根州安阿伯市,美国48105,美国。 6美国CUNY研究生中心生物化学研究生课程,美国纽约,纽约,10031年。 7哥伦比亚人类发展中心/哥伦比亚大学瓦格洛斯大学医学院医学系干细胞疗法中心,美国纽约州纽约州纽约市8约翰·霍普金斯大学医学院,巴尔的摩,马里兰州21287,约翰·霍普金斯大学医学院。 9密歇根大学密歇根大学,密歇根大学,密歇根州安阿伯市,48105,美国10分子医学系,加拿大魁北克魁北克省魁北克市分子医学系;加拿大魁北克蒙特利尔市麦吉尔大学神经学和神经外科系;不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学生物化学与分子生物学系;加拿大不列颠哥伦比亚省维多利亚大学,维多利亚大学,高级材料与相关技术和衰老与终身健康研究所。 11 Fishberg神经科学系,弗里德曼脑研究所,罗纳德·M·勒布·勒布·阿尔茨海默氏病中心,美国纽约州西奈山的伊坎医学院,美国纽约州10029,美国。2生物学研究生课程,CUNY研究生中心,纽约,纽约,纽约10031,美国。3,加拿大维多利亚州维多利亚大学医学科学系。 4约翰·霍普金斯大学医学院神经病学系,巴尔的摩,马里兰州21287,美国。 5眼科与视觉科学系,密歇根大学密歇根大学凯洛格眼中中心,密歇根州安阿伯,密歇根州安阿伯市,美国48105,美国。 6美国CUNY研究生中心生物化学研究生课程,美国纽约,纽约,10031年。 7哥伦比亚人类发展中心/哥伦比亚大学瓦格洛斯大学医学院医学系干细胞疗法中心,美国纽约州纽约州纽约市8约翰·霍普金斯大学医学院,巴尔的摩,马里兰州21287,约翰·霍普金斯大学医学院。 9密歇根大学密歇根大学,密歇根大学,密歇根州安阿伯市,48105,美国10分子医学系,加拿大魁北克魁北克省魁北克市分子医学系;加拿大魁北克蒙特利尔市麦吉尔大学神经学和神经外科系;不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学生物化学与分子生物学系;加拿大不列颠哥伦比亚省维多利亚大学,维多利亚大学,高级材料与相关技术和衰老与终身健康研究所。 11 Fishberg神经科学系,弗里德曼脑研究所,罗纳德·M·勒布·勒布·阿尔茨海默氏病中心,美国纽约州西奈山的伊坎医学院,美国纽约州10029,美国。3,加拿大维多利亚州维多利亚大学医学科学系。4约翰·霍普金斯大学医学院神经病学系,巴尔的摩,马里兰州21287,美国。5眼科与视觉科学系,密歇根大学密歇根大学凯洛格眼中中心,密歇根州安阿伯,密歇根州安阿伯市,美国48105,美国。6美国CUNY研究生中心生物化学研究生课程,美国纽约,纽约,10031年。 7哥伦比亚人类发展中心/哥伦比亚大学瓦格洛斯大学医学院医学系干细胞疗法中心,美国纽约州纽约州纽约市8约翰·霍普金斯大学医学院,巴尔的摩,马里兰州21287,约翰·霍普金斯大学医学院。 9密歇根大学密歇根大学,密歇根大学,密歇根州安阿伯市,48105,美国10分子医学系,加拿大魁北克魁北克省魁北克市分子医学系;加拿大魁北克蒙特利尔市麦吉尔大学神经学和神经外科系;不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学生物化学与分子生物学系;加拿大不列颠哥伦比亚省维多利亚大学,维多利亚大学,高级材料与相关技术和衰老与终身健康研究所。 11 Fishberg神经科学系,弗里德曼脑研究所,罗纳德·M·勒布·勒布·阿尔茨海默氏病中心,美国纽约州西奈山的伊坎医学院,美国纽约州10029,美国。6美国CUNY研究生中心生物化学研究生课程,美国纽约,纽约,10031年。7哥伦比亚人类发展中心/哥伦比亚大学瓦格洛斯大学医学院医学系干细胞疗法中心,美国纽约州纽约州纽约市8约翰·霍普金斯大学医学院,巴尔的摩,马里兰州21287,约翰·霍普金斯大学医学院。9密歇根大学密歇根大学,密歇根大学,密歇根州安阿伯市,48105,美国10分子医学系,加拿大魁北克魁北克省魁北克市分子医学系;加拿大魁北克蒙特利尔市麦吉尔大学神经学和神经外科系;不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学生物化学与分子生物学系;加拿大不列颠哥伦比亚省维多利亚大学,维多利亚大学,高级材料与相关技术和衰老与终身健康研究所。 11 Fishberg神经科学系,弗里德曼脑研究所,罗纳德·M·勒布·勒布·阿尔茨海默氏病中心,美国纽约州西奈山的伊坎医学院,美国纽约州10029,美国。9密歇根大学密歇根大学,密歇根大学,密歇根州安阿伯市,48105,美国10分子医学系,加拿大魁北克魁北克省魁北克市分子医学系;加拿大魁北克蒙特利尔市麦吉尔大学神经学和神经外科系;不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省的不列颠哥伦比亚大学生物化学与分子生物学系;加拿大不列颠哥伦比亚省维多利亚大学,维多利亚大学,高级材料与相关技术和衰老与终身健康研究所。11 Fishberg神经科学系,弗里德曼脑研究所,罗纳德·M·勒布·勒布·阿尔茨海默氏病中心,美国纽约州西奈山的伊坎医学院,美国纽约州10029,美国。12这些作者同等贡献#函数,向:
摘要 - 提供更现实的神经元动力学的启用神经网络(SNN)已证明在几个机器学习任务中实现了与人工神经网络(ANN)相当的性能。信息在基于事件的机制中以显着降低能源消耗的基于事件的机制而作为SNN中的峰值进行处理。但是,由于尖峰机制的非差异性质,训练SNNS具有挑战性。传统方法,例如通过时间的反向传播(BPTT),已显示出有效性,但具有额外的综合和记忆成本,并且在生物学上是难以置信的。相比之下,最近的作品提出了具有不同程度的地方性的替代学习方法,在分类任务中表现出成功。在这项工作中,我们表明这些方法在培训过程中具有相似性,同时它们在生物学合理性和性能之间进行了权衡。此外,这项研究研究了SNN的隐式复发性质,并研究了向SNN添加显式复发的影响。我们在实验上证明,添加显式复发权重可以增强SNN的鲁棒性。我们还研究了基于梯度和非梯度的对抗性攻击下本地学习方法的性能。索引术语 - 启用神经网络,本地学习,培训方法,集中的内核对齐,Fisher信息。