标题:用于实时信号处理应用的容错 VLSI 架构设计摘要:由于设计复杂性和晶体管密度的增加导致芯片故障率很高,容错在当今的数字设计中变得极为重要。我们已经确定了现有容错方法的主要缺陷,并尽可能地尝试纠正它们。我们修改了传统的动态重构方法,使其适用于实时信号处理应用,并结合了热备用、优雅降级、级联性和 C 可测试性。我们还提出了一些新的静态冗余技术,这些技术在各个方面都优于现有方法,并且具有实际适用性。• 使用 XILINX 中的 verilog HDL 和原理图级与 virtex-6 进行 RTL 设计、仿真和验证• 使用 SYNOPSYS 工具进行设计和验证以及面积和关键路径结果的计算• 使用 CADENCE 工具进行一些面积和延迟计算。
ACTN3 R577X多态性。 J锻炼营养生物化学。 2015; 19(3):157-64。 3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。ACTN3 R577X多态性。J锻炼营养生物化学。2015; 19(3):157-64。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。 ACTN3 R577X基因型与日本人群中的肌肉功能有关。 Appl Physiol Nutr Metab。 2015; 40(4):316-22。 4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。 自然。 2004; 429(6991):575-8。 5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。 基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。 nat Commun。 2019; 10(1):4056。3 Kikuchi N,Yoshida S,Min SK,Lee K,Sakamaki-Sunaga M,Okamoto T等。ACTN3 R577X基因型与日本人群中的肌肉功能有关。Appl Physiol Nutr Metab。2015; 40(4):316-22。4 Gatfield D,Izaurralde E.胡说八道介导的信使RNA衰变是由果蝇的核核酸裂解引发的。自然。2004; 429(6991):575-8。5 Tuladhar R,Yeu Y,Tyler Piazza J,Tan Z,Rene Clemenceau J,Wu X等。基于CRISPR-CAS9的诱变经常引起目标mRNA的正调。nat Commun。2019; 10(1):4056。
ken-ichi Yamada,Shun Ishibashi,Naohiro Sata,Marcus Conrad,Masafumi Takahashi#
202. 3) Wang, JY, Tuck, OT, Skopintsev, P., Soczek, KM, Li, G., Al-Shayeb, B., Zhou, J., & Doudna, JA (2023) 通过 CRISPR 修剪器整合酶进行基因组扩展。Nature,618,855 ‒ 861。4) Wang, JY, Pausch, P., & Doudna, JA (2022) CRISPR-Cas 免疫和基因组编辑酶的结构生物学。Nat. Rev. Microbiol. , 20 , 641 ‒ 656。5) Anzalone, AV、Randolph, PB、Davis, JR、Sousa, AA、Ko-blan, LW、Levy, JM、Chen, PJ、Wilson, C.、Newby, GA、Raguram, A. 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature,576,149 ‒ 157。6) Mehta, J. (2021) CRISPR-Cas9 基因编辑用于治疗镰状细胞病和β地中海贫血。N. Engl. J. Med.,384,e91。 7) Kapitonov, VV, Makarova, KS, & Koonin, EV (2015) ISC,一组编码 Cas9 同源物的新型细菌和古细菌 DNA 转座子。J. Bacteriol. ,198,797 ‒ 807。8) Altae-Tran, H., Kannan, S., Demircioglu, FE, Oshiro, R., Nety, SP, McKay, LJ, Dlakić, M., Inskeep, WP, Makarova, KS, Macrae, RK, et al. (2021) 广泛分布的 IS200/IS605 转座子家族编码多种可编程的 RNA 引导的核酸内切酶。 Science , 374 , 57 œ 65。9) Weinberg, Z., Perreault, J., Meyer, MM, & Breaker, RR (2009) 细菌宏基因组分析揭示的特殊结构化非编码 RNA。Nature , 462 , 656 œ 659。10) Hirano, S., Kappel, K., Altae-Tran, H., Faure, G., Wilkinson, ME, Kannan, S., Demircioglu, FE, Yan, R., Shiozaki, M., Yu, Z., et al. (2022) OMEGA 切口酶 IsrB 与 ω RNA 和靶 DNA 复合的结构。 Nature , 610 , 575 œ 581。11) Biou, V., Shu, F., 和 Ramakrishnan, V. (1995) X 射线晶体学显示翻译起始因子 IF3 由两个通过 α 螺旋连接的紧凑的 α/β 结构域组成。EMBO J. , 14 , 4056 œ 4064。12) Schuler, G., Hu, C., 和 Ke, A. (2022) IscB-ω RNA 进行 RNA 引导的 DNA 切割的结构基础以及与 Cas9 的机制比较。 Science,376,1476 ‒ 1481。13) Bravo, JPK、Liu, MS、Hibshman, GN、Dangerfield, TL、Jung, K.、McCool, RS、Johnson, KA 和 Taylor, DW (2022) CRISPR-Cas9 错配监测的结构基础。Nature,603,343 ‒ 347。14) Aliaga Goltsman, DS、Alexander, LM、Lin, JL、Fregoso Ocampo, R.、Freeman, B.、Lamothe, RC、Perez Rivas, A.、Temoche-Diaz, MM、Chadha, S.、Nordenfelt, N. 等人 (2022) 从未培养的微生物中发现用于基因组编辑的紧凑型 Cas9d 和 HEARO 酶。Nat. Commun. ,13,7602。
在准备提案时,应考虑到这些因素。为了获得有关任务和当地情况的第一手资料,我们鼓励顾问在提交提案前与国家政府-卡吉阿多南选区发展基金联系,了解他们可能需要的任何信息,并在适当的情况下参加提案前会议。顾问应联系附录“ITC”中列出的官员,安排任何访问或获取有关提案前会议的更多信息。顾问应确保及时通知这些官员访问事宜,以便他们做出适当的安排。