电子邮件:jia_liu@seas.harvard.edu 学术任职 01/2019- 哈佛大学工程与应用科学学院生物工程助理教授 2015-2018 斯坦福大学化学工程与生物工程系博士后 2014-2015 哈佛大学化学与化学生物学系博士后研究员 教育经历 2009-2014 哈佛大学化学博士 2005-2009 复旦大学化学学士 奖项与荣誉 2022 被《麻省理工技术评论》评选为 35 岁以下发明家(全球名单) 2022 被《先进材料》评选为“新星”奖 2022 美国空军科学研究办公室 (AFOSR) 青年研究员计划 (YIP) 奖 2021 NIH/NIDDK 催化剂奖(DP1,主任先锋奖计划) 2021 2021 MRS 最佳研讨会演讲奖 2021 哈佛 SEAS LInc 教职员工奖学金 2020 威廉·F·米尔顿奖 2020 哈佛干细胞研究所种子基金奖 2019、2020 哈佛大学院长有前途奖学金竞争基金 2019 阿拉蒙特青年教师奖 2016 Springer 年度最佳论文奖 2016 入围 Burroughs Wellcome 基金、科学界面职业奖 2015 C&EN 评选的“注射器注射电子学”最显著化学研究进展 2015 科学美国人评选的“注射器注射电子学”十大改变世界的想法 2014 中国优秀留学生 2012 哈佛大学 Fieser 讲座奖 2009 个人科技创新学术奖学金 2007-2008 金惠君李政道奖学金 2008 埃克森美孚美孚奖学金 2005 年州冠军、全国高中化学奥林匹克学生奖项和荣誉 2021 年研究生 Paul Le Floch 入选福布斯 30 位 30 岁以下 | 2022 年科学榜单。 2021 年研究生 Paul Le Floch 在 2021 年 MRS 秋季会议上获得 MRS 研究生金奖。 2021 年研究生 Ariel Lee 获得 NSF 研究生奖学金。 2021 年研究生 Jaeyong Lee 获得 Kwanjeong 教育基金会颁发的 Kwanjeong 奖学金 2020 年研究生 Yichun He 获得哈佛大学艺术与科学研究生院颁发的 James Mills Piece 奖学金 2020 年本科生 Daniel Solomon 获得哈佛大学研究项目奖学金 2019 年研究生 Hao Sheng 获得研究生 Aramont 奖 2019 年本科生 Thomas Blum 获得达文波特学院 Richter 暑期奖学金
单相电解质的低离子电导率已不能满足600 ˚C以下的使用要求,制备高离子电导率的复合电解质成为发展方向。本文综述了掺杂CeO 2 无机盐(碳酸盐、硫酸盐)、掺杂CeO 2 金属氧化物以及掺杂CeO 2 钙钛矿复合电解质,分析了第二相对CeO 2 基电解质性能的影响。由于独特的H + /O 2−共导电性,无机盐的加入可以提高掺杂CeO 2 无机盐复合电解质的电导率。掺杂CeO 2 钙钛矿体系总电导率的提高可能是由于晶界电导率提高引起的。在掺杂CeO 2 金属氧化物体系中加入氧化物可以降低烧结温度,提高晶界电导率。以期为制备性能优异的二氧化铈复合电解质提供理论指导。
Figure 7. Morphologies and surface roughness values of (a) the initial surface and the polished surface under conditions of (b) without UV-light, (c) TiO 2 film electrode with UV-light, (d) TiO 2 film electrode with UV-light and anodic bias, (e) CeO 2 -TiO 2 composite-film electrode with UV-light and (f) CeO 2 -TiO 2 composite-film elec- trode with UV-light and anodic bias [31] 图 7. (a) 初始表面; (b) 无紫外光条件下抛光表面; (c) 有紫外光并使用用 TiO 2 薄膜电极抛光下表 面; (d) 在有紫外光和阳极偏压的 TiO 2 薄膜电极下抛光表面; (e) 有紫外光并使用 CeO 2 -TiO 2 复合 膜电极下抛光表面; (f) 有紫外光和阳极偏压的 CeO 2 -TiO 2 复合膜电极抛光表面的形貌和表面粗糙 度值 [31]
摘要:多吡咯(PPY)是一种廉价的导电聚合物,具有有效的存储容量,但其有限的溶解度限制了其生产和应用。因此,为了扩大其应用范围,多功能PPY复合材料的设计和研究引起了极大的关注。PPY/铁基复合材料是通过水热方法,聚合方法和一锅方法等方法制备的。有关PPY/铁复合材料的应用的研究主要集中在电容器,电磁波吸收材料,吸附剂,传感器,药物和催化剂等领域。,它们在超级电容器的电极材料,电磁波的吸收,重金属离子的吸附以及催化降解,展示广泛的应用前景中表现出色。随着制备技术的持续发展和应用领域的进一步扩展,PPY/基于铁的复合材料有望在更多领域中发挥重要作用。关键字:polypyrrole;准备方法;复合材料;应用区域
特殊讲座Tokuron 2024.4-2025.3标题:对老化说:氧化还原药理学和精密医学教学人员:Chang Chen;日期和时间:2月27日,星期四,REIWA 5:45-17:15时间和日期:15:45-17:15,2月27日(THU.),2025年:医学研究大楼3楼,医学研究大楼3(3F)语言:英语摘要:人口老化已成为世界各地的重要问题抗氧化剂已被尝试用作抗衰老干预措施但是,临床结果仍然令人失望我们最近提出了精确氧化还原的概念,“ 5R”原理是抗氧化剂药理学的关键,即正确的物种,正确的位置,正确的时间,正确的水平和正确的目标作为氧化还原医学的指南我们的最新结果进一步验证了上述概念我们发现Ca 2+ /钙调蛋白依赖性蛋白激酶IIαs-硝化作用(SNO-CAMKIIα)在学习和记忆任务过程中会增加,而在自然衰老过程中则显着降低在主要的CAMKIIαS-硝基化位点(C280/289V)处于突变的小鼠暴露的认知障碍并减弱了长期增强(LTP)缺乏SNO-CAMKIIα会增加突触I(Syni)磷酸化,从而导致过度突触前释放概率,从而导致学习和记忆反应减少,而不仅在C280/289V小鼠中发生,而且在阿尔茨海默氏病(AD)小鼠和自然衰老的小鼠中也会发生根据“ 5R”原理,我们设计了一个胶分子,该胶分子精确地增加了SNO-CAMKIIα并成功挽救了小鼠的学习和记忆障碍。我们的发现表明,SNO-CAMKIIα的下调是一种新的机制,介导了与衰老有关的学习和记忆下降,并为氧化还原药理学和精密医学提供了新的灯光。有关发言人的信息:Chang Chen教授目前是中国科学院生物物理学研究所(CAS),CAS教授和CAS大学教授和Biomacromolecules国家实验室副主任(2012-20223)的首席研究员。她的主要研究兴趣是一氧化氮和s-硝酸(YL)ation和其他氧信号转导中的其他硫醇修饰。老化和相关疾病中的氧化还原调节;中药的机制。* *生体反応病理学