许多人类疾病源于减少或损害基因产物的突变。基因疗法作为治疗遗传疾病的一种策略,在1972年正式提出(Friedmann and Roblin,1972),引入了“基因可以是医学”的概念。在随后的几十年中,这种医学概念的实施受到了最初的兴奋,严重的挫折,兴趣复兴以及最近的临床成功(Dunbar等,2018; High and Roncarolo,2019)。尽管取得了这些成功,但是,提供功能性基因副本来代替突变的基因并不是许多疾病的完美解决方案。例如,外源基因拷贝缺乏许多对内源基因表达和功能很重要的调节元件。此外,对于功能性的致病突变,仅提供基因的野生型副本是无效的。这些局限性和其他局限性可以通过直接“编辑”突变的基因来解决,从而在自然环境中恢复基因功能。
CRISPR/Cas 技术近期已成为植物基因功能研究和作物改良的首选分子工具。小麦是一种全球重要的主粮作物,其基因组已被充分注释,使用基因组编辑技术(如 CRISPR/Cas)有很大空间改善其重要的农业性状。作为本研究的一部分,我们针对六倍体小麦 Triticum aestivum 中的三个不同基因:春季品种 Cadenza 中的 TaBAK1-2 以及冬季品种 Cezanne、Goncourt 和 Prevert 中的 Ta- eIF4E 和 Ta-eIF(iso)4E。已成功生成所有目标基因的携带 CRISPR/Cas 诱导的插入/缺失的原代转基因系。由于冬小麦品种通常不太适合遗传转化,本研究中介绍的冬小麦转化和基因组编辑的成功实验方法将引起研究该作物的研究界的兴趣。
在医疗和工业环境中广泛使用合成噬菌体的主要限制是缺乏有效的噬菌体工程平台。经典的T4噬菌体工程和几种新提出的方法通常效率低下且耗时,因此,只能产生不一致的基因组编辑率范围在0.03-3%之间。在这里,我们审查并提出了对CRISPR/CAS9辅助基因组工程技术的新理解,该技术可显着提高T4噬菌体的基因组编辑率。Our results indicate that crRNAs selection is a major rate limiting factor in T4 phage engineering via CRISPR/Cas9.我们能够实现多个基因的编辑率> 99%,该基因功能函数在进一步应用中功能函数。我们设想,这种改善的噬菌体工程平台将加速个性化的噬菌体疗法,生物控制和快速诊断的领域。
摘要 随着反向遗传操作平台的建立,柔嫩艾美耳球虫已成为研究原虫生物学和免疫学的宝贵模式生物。本文介绍了利用CRISPR(成簇的规律间隔的短回文重复序列)/Cas9(内切酶)系统对柔嫩艾美耳球虫进行高效基因编辑的应用,表明CRISPR/Cas9系统可通过一条向导RNA介导位点特异性的双链DNA断裂。利用该系统,我们成功地将红色荧光蛋白插入内源性微线体蛋白2(EtMic2)的C端,对其进行了标记。我们的研究结果将CRISPR/Cas9介导的基因改造系统的应用扩展到柔嫩艾美耳球虫,为针对性地研究顶复门寄生虫的基因功能开辟了一条新途径。
他通过国际合作参与了大米基因组项目的研究,并为解密基因组做出了重大贡献,例如在大米中创建遗传图,并使用大米进行了全面的基因组信息,以阐明在生殖器官开发和生殖隔离中起作用的基因功能。此外,已经发现对从世界各地收集的栽培和野生水稻的基因组分析导致了水稻种植的起源以及目前在日本种植的Japonica物种的起源。此外,他已经开发并建立了一个系统,用于分发在热带和亚热带地区收集的大约1,700种野生水稻的物种,并促进了它们的多样性和进化研究,并且也一直在积极努力为多样化的水稻育种建立研究基金会,从而为工厂研究人员的发展提供了发展。这些结果为植物科学和植物遗传学的发展做出了巨大贡献,这导致了稳定的粮食生产。
我们开发了Ont-Cappable-Seq,这是一种专门的长阅读RNA测序技术,允许使用纳米孔测序[1]对主要的,未经处理的RNA进行端到端测序。我们应用了Ont-Cappable-seq研究一组噬菌体,提供了病毒转录起始位点,终结器位点和复杂的操纵子结构的全面基因组图,这些结构细调了基因表达。许多发现的启动子和终结者都是新颖的,尚未被识别或预测。新的启动子和终结器的强度差异很大,使其成为新合成DNA电路的理想选择。在程度上,由Ont-Cappable-Seq提供的更精致的操纵子组织可以给基因功能提供新的提示,并启用更好的知情噬菌体工程方法。ont-cappable-seq是一种更好地了解噬菌体生物学和推动合成生物学的有力方法。
模块1:序列分析该项目的目的是使用在线工具(例如Blast或Clustal Omega)分析核苷酸或蛋白质序列。学生将从公共数据库(如NCBI)中选择一种感兴趣的基因或蛋白质,检索序列并执行序列比对以识别同源区域。他们将分析物种序列的相似性和差异,并解释进化关系。这个项目可以在家中使用计算机和Internet访问完成,需要5-7天。最终输出将是一份报告,详细介绍了基因或蛋白质的作用及其在物种之间的保护。模块2:该项目中的数据库探索,学生将探索GenBank,Uniprot或PDB等公共数据库以检索核酸和蛋白质序列。目标是提取和分析注释的信息,以了解基因功能和蛋白质结构。学生将比较跨物种的这些序列并解释其
这个特刊,《树木遗传学和基因组学》的最新进展突出了森林树生物学的尖端研究。它专注于遗传学,基因组学和分子育种,将现代工具(例如CRISPR-CAS9,GWAS和多媒体)整合在一起,以优化对林业和生态系统弹性至关重要的特征。关键主题包括自适应性状(例如,耐旱性,营养利用效率)中的基因功能,对非生物压力的压力弹性(例如盐度,重金属毒性,极端温度)以及对增强物种存活,生物多样性保护和碳序列的气候适应性。我们还鼓励研究树木中的养分富集,以恢复土壤健康,促进可持续的农林业和改善生态系统服务。我们欢迎对模型(例如,Populus,Eucalyptus)和非模型树种的贡献,涵盖了基本发现和生物技术创新。本期特刊为树遗传学的最新进步及其对林业,保护和可持续性的影响提供了宝贵的见解。
抽象的太平洋牡蛎(Crassostrea gigas)是世界上种植最广泛的贝类物种之一。由于其经济价值和复杂的生命周期,涉及从自由宽松的幼虫到无柄少年的急剧变化,因此C.Gigas被用作发展,环境和水产养殖研究的模型。但是,由于缺乏功能分析的遗传工具,与生物或经济特征相关的基因功能无法轻易确定。在这里,我们报告了CRISPR/CAS9技术在C.Gigas中成功应用肌球蛋白基本光链基因(CGMELC)。C.注入SGRNA/CAS9的GIGAS胚胎在目标部位包含广泛的indel突变。突变幼虫显示出缺陷的肌肉和运动降低。此外,CGMELC的敲除破坏了幼虫中肌球蛋白重链阳性肌纤维的表达和图案。一起,这些数据表明CGMELC参与牡蛎幼虫中的幼虫肌肉收缩和肌发生。
通过诱导有害外显子跳跃来恢复基因功能已被证明可有效治疗遗传疾病。然而,许多临床上成功的外显子跳跃疗法都是基于寡核苷酸的短暂疗法,需要频繁给药。基于 CRISPR-Cas9 的基因组编辑可导致外显子跳跃,是一种有前途的治疗方式,可以永久缓解遗传疾病。我们表明,机器学习可以选择破坏剪接受体并导致目标外显子跳跃的 Cas9 向导 RNA。我们通过实验测量了小鼠胚胎干细胞中 1,063 个向导 RNA 靶向的 791 个剪接序列的多样化基因组整合文库的外显子跳跃频率。我们发现,当使用阈值预测的外显子跳跃频率分别为 50% 和 70% 时,我们的方法 SkipGuide 能够以 0.72 和 0.91 的精度识别有效的向导 RNA。我们预计 SkipGuide 将有助于选择用于评估 CRISPR-Cas9 介导的外显子跳跃疗法的引导 RNA 候选物。