Ultra-high efficiency T cell reprogramming at multiple loci with SEED-Selection Christopher R. Chang 1,2,3,4 , Vivasvan S. Vykunta 1,2,3,4 , Daniel B. Goodman 1,2,5,13 , Joseph J. Muldoon 1,2 , William A. Nyberg 1,2 , Chang Liu 1,2 , Vincent Allain 1,2,11 , Allison Rothrock 1,2 ,夏洛特·H·王(Charlotte H. Wang)1,2,4,亚历山大·马森(Alexander Marson)1,2,5,6,8,9,10,12,Brian R. Shy 1,7,10和Justin Eyquem 1,2,5,6,8,8,10*
结果:进行了一项病例对照研究,涉及211名AD患者,508例PD患者(包括117例患有痴呆症)和412名健康个体。年龄和性别分层分析表明,RS871269/ TNIP1与载荷相关(P = 0.035),并且在基因型模型中,雄性中的AD(P = 0.044)与AD相关。In the allele model, rs871269/ TNIP1 was found to be associated with PD in the Chinese Han population ( p = 0.0035, OR 0.741, 95% CI 0.559-0.983), and rs708382/ GRN was identified as a risk factor for Parkinson's disease dementia (PDD) in the Chinese Han population ( p = 0.004, odds ratio (OR)0.354,95%置信区间(CI)0.171-0.733)。然而,在其余四个基因座(RS113020870/ AGRN,RS6891966/ HAVCR2,RS2452170/ NTN5,RS1761461/ LILRB2)中,未观察到与AD或PD的显着关联。
此预印本版的版权持有人于2024年1月21日发布。 https://doi.org/10.1101/2022.12.12.31.22284080 doi:medrxiv preprint
摘要:DNA 甲基化与染色质状态和细胞类型特异性基因表达的调节密切相关。印记控制区 (ICR) 上的等位基因特异性 DNA 甲基化调控母源或父源等位基因的印记基因的独家表达。H19/IGF2 印记位点 ICR1 处的异常 DNA 高甲基化或低甲基化分别是印记障碍 Beckwith-Wiedemann 综合征 (BWS) 和 Silver-Russell 综合征 (SRS) 的特征。在本文中,我们使用 dCas9-SunTag 和 TET1 催化域进行表观基因组编辑,以诱导 HEK293 细胞中 ICR1 处的靶向 DNA 去甲基化。靶位点的 5-甲基胞嘧啶 (5mC) 水平降低高达 90%,瞬时转染 27 天后,仍观察到 >60% 的去甲基化。与 ICR1 内 CTCF 结合位点的稳定去甲基化一致,DNA 甲基化敏感绝缘体 CTCF 蛋白的占有率在 27 天内增加了 2 倍以上。此外,H19 表达稳定增加了 2 倍,而 IGF2 受到抑制,尽管只是暂时的。我们的数据表明,表观基因组编辑能够在一次短暂治疗后实现印迹控制区域 DNA 甲基化的长期变化,这可能为治疗性表观基因组编辑方法在治疗印迹障碍方面铺平了道路。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2024年1月4日发布。 https://doi.org/10.1101/2024.01.033.24300770 doi:medrxiv preprint
摘要:在这项研究中,热点区域,QTL簇和候选基因具有八个与耳朵相关的玉米特征(耳长,耳长,耳道,内核行号,每行的内核数,内核长度,内核宽度,内核宽度,内核厚度和100个内核重量),并总结了三个十二次。本评论的目的是(1)全面总结和分析与这八个与耳朵相关性状相关的QTL的研究,并确定位于玉米染色体上的热点式bin区域以及与耳朵相关性状相关的关键候选基因,以及与QTL和稳定的QTL和QTL clusers和QTL clusers相关的杂物和QTL clusique和QTL clusequique and Migapppers的信息,并兴起。用于高收益和高质量玉米的映射,基因克隆和育种。先前的研究表明,与耳朵相关性状的QTL分布在玉米中的所有十种染色体上,而表型变异的解释为单个QTL范围为0.40%至36.76%。总共确定了所有十种染色体的耳朵相关性状的23个QTL热点箱。最突出的热点区域是4号染色体上的bin 4.08,其中15个QTL与八个与耳朵相关性状有关。此外,本研究确定了与耳朵相关性状相关的48个候选基因。在这些研究中,有五个被克隆和验证,而QTL热点中的二十8个候选基因是由本研究定义的。本评论对QTL映射的进步以及与八个与耳朵相关特征相关的关键候选者的识别提供了更深入的了解。这些见解无疑将帮助玉米育种者制定策略来开发高产玉米品种,从而有助于全球粮食安全。
Juna M. Nasrallah,Abdulkadir B,Theodore D. Boquet -Pjadas G,Elizabeth Mamourian B,Sinnivasan Srinavasan。 Yang H,Paola Dazzan J,Rene St. Kahn K,Hugo G. Schnack,Marcus V.Wood Q,消息来源,拉蒙塔尼(Lamontagne),苏珊·奥斯丁(Susan Austin),莱诺尔·J·劳纳(Lenorer J.
摘要:水稻植物的高度是一种与生物量,住宿耐受性和产量密切相关的农业特征。识别与植物高度调节和制定筛查潜在候选基因的策略有关的定量性状基因座(QTL)区域可以改善水稻的农业特征。在这项研究中,使用了跨越“ Cheongcheong”和“ Nagdong”个体的双单倍体种群(CNDH),并使用了222个单序重复标记构建遗传图。在RM3482-RM212区域中,染色体1,QPH1,QPH1-1,QPH1-3,QPH1-5和QPH1-6的区域连续五年识别。表型方差解释的范围为9.3%至13.1%,LOD评分在3.6至17.6之间。Osphq1是一种与植物高度调节有关的候选基因,在RM3482-RM212中进行了筛选。Osphq1是吉布雷素20氧化酶2的直系同源物,其单倍型以9个SNP区分。根据其高度将植物分为两组,并根据Osphq1的表达水平区分高植物并聚集。QTL和候选基因,因此,筛选了生物量调节,但是调节的分子机制仍然鲜为人知。本研究获得的信息将有助于开发通过水稻植物高度控制的标记辅助选择和繁殖的分子标记。
昆虫显示出各种各样的眼睛和身体颜色。编码涉及生物合成和颜料沉积的基因是理想的遗传标记物,例如促进果蝇遗传学的力量。oncopeltus fasciatus是一个新兴昆虫的新兴模型,昆虫是刺穿的喂食顺序的成员,其中包括害虫和疾病媒介。为了鉴定O. fasciatus的候选可见标记,我们使用了父母和若虫RNAi来识别改变眼睛或身体颜色的基因,而在没有有害的生存力上没有有害的e ects。我们选择了Vermilion进行CRISPR/CAS9基因组编辑,产生了三个独立的功能突变线。这些研究映射到X染色体,将基因的第一个分配给该物种的染色体。纯种合物具有鲜红色,而不是黑色的眼睛,并且完全可行且肥沃。我们使用这些突变体来验证果蝇玫瑰色的直系同源物的作用,在使用RNAi促进红色色素沉着中。而不是野生型红色的身体,而缺乏朱红色和XDH1的虫子具有明亮的黄色身体,这表明豆粒和翼龙有助于O. fasciatus的身体颜色。我们的研究生成了O. fasciatus的第一个基因可见标记,并扩展了该模型系统的遗传工具包。
遗传关联研究已经确定了数百个与2型糖尿病(T2D)和相关性状相关的独立信号。尽管取得了这些成功,但鉴定遗传关联信号基础的特定因果变异仍然具有挑战性。在这项研究中,我们描述了一种深度学习(DL)方法,以分析序列变体对增强子的影响。专注于胰岛(T2D相关组织),我们表明我们的模型学习了胰岛特异性转录因子(TF)调节模式,可用于优先考虑候选因果变体。在与T2D和相关血糖性状相关的101个遗传信号中,在链接不平衡中发生多种变体,我们的方法提名每个关联信号的单个因果变体,包括先前显示的三种变体在胰岛含量与含量的细胞类型中改变了报告基因的活性。对于与血糖水平相关的另一个信号,我们使用胰岛β细胞系中的统计细胞映射测试所有候选因果变异,并显示出对模型定位变体TF结合的等位基因影响的生化证据。为了帮助未来的研究,我们公开分发了约6700万个遗传变异的模型和胰岛增强子扰动分数。我们预计,本研究中提出的DL方法将增强候选因果变异的优先级,用于功能研究。