1伊利诺伊州南部伊利诺伊大学农业科学学院,美国伊利诺伊州卡本代尔,伊利诺伊州62901; dounya.knizia@siu.edu(d.k.); naoufal.lakhssassi@siu.edu(N.L.); erdem.anil@siu.edu(E.A.); mohamed.embaby@siu.edu(M.E.); meksem@siu.edu(k.m.)2 USDA,美国农业研究服务部,农作物研究部,美国MS 38776,实验站路141号; nacer.bellaloui@usda.gov 3植物基因组学和生物技术实验室,生物学和法医学系,费耶特维尔州立大学,美国北卡罗来纳州28301,Fayetteville State University; jyuan@uncfsu.edu 4美国密苏里州密苏里大学植物科学技术部,美国密苏里州65211; vuongt@missouri.edu(t.v.); nguyenhenry@missouri.edu(H.T.N。)5 USDA,农业研究服务,作物遗传学研究部门,605 Airways Blvd,Jackson,TN 38301,美国; alemu.mengistu@usda.gov *通信:mkassem@uncfsu.edu
摘要:一个重组的近交系数量,包括371条线,由每个尖峰(KNP)基因型T1208和低KNPS基因型Chuannong18(CN18)开发。由小麦55k SNP阵列构建的遗传连锁图由11,583个标记组成。在三年内检测到与KNP有关的定量性状基因座(QTL)。分别使用ICIM-BIP,ICIM-MET和ICIM-EPI方法来识别八个,二十七个和四个QTL。一个QKTL,QKNPS.SAU-2D.1,在染色体2D上映射,可以平均解释18.10%的表型变化(PVE),并被视为KNP的主要稳定QTL。此QTL位于2D染色体上的0.89 MB间隔,并由标记物AX-109283238和AX-111606890倾斜。此外,设计了与qknps.sau-2d.1紧密相关的Kompetive Primentififififif PCR(KASP)标记的KASP-AX-111462389。QKNPS.SAU-2D.1对KNP的遗传作用成功地确认了两个RIL种群。结果还表明,KNPS和1000个内核重量(TKW)的显着增加是由QKNPS.SAU-2D.1引起的,这是由于尖峰数量(SN)的减少而克服了劣势,并最终导致晶粒产量的显着增加。此外,在QKNPS.SAU-2D.1位于中国春季参考基因组中的间隔内,仅发现了十五个基因,并且两个可能与KNP相关的基因都被鉴定出来。qknps.sau-2d.1可能会为未来的高产小麦育种提供新的资源。
摘要:耕种的花生(Arachis hypogaea L.)是全球重要的油和现金作物。一百个烟和种子的重量是花生产量的重要组成部分。在当前的研究中,为了揭开一百个pod重量(HPW)和百分子重量(HSW)的遗传基础,从JH5(JH5,大豆荚和种子重量和种子重量)之间的十字架开发了一个重组近交系(RIL)人群,并使用M130(小荚和种子重量)(小荚和种子重量),并用来识别QTLS和HPW和HPW。使用SSR,AHTE,SRAP,TRAP和SNP标记构建了一个集成的遗传链接图。该地图由3130个遗传标记组成,分配给20个染色体,并覆盖1998.95 cm,平均距离为0.64 cm。在此基础上,HPW和HSW的31个QTL位于7个染色体上,每个QTL占表型方差的3.7–10.8%(PVE)。其中,在多个环境下检测到了七个QTL,并且在B04和B08上发现了两个主要的QTL。值得注意的是,染色体A08上的QTL热点在2.74 cm的遗传间隔内包含7个QTL,其中包括0.36 MB物理图,包括18个候选基因。Arahy.d52S1Z,Arahy.ibm9rl,Arahy.W18Y25,Arahy.cplc2w和Arahy.14H.14H可能在调节花生荚和种子重量中发挥作用。这些发现可以促进进一步研究培养花生中影响豆荚和种子重量的遗传机制。
简介:发生的犯罪行为行为具有多种模式和动机。此外,罪犯总是试图在犯罪现场隐藏或消除证据。在大多数情况下,警察或法医专家经常在犯罪现场发现DNA。这些物品之一是戒指,这是人类经常穿的物品。方法:本研究使用了24个已戴8小时并在室温下孵育的环样本。然后将所有这24个样品区分为4组,其中每组由6个样品组成,并在0、1、3和7天孵育。DNA鉴定。Results: The mean result of DNA quantification on day 0 (control) was 1020,833 ± 0.28903 ng/μL, day 1 was 546 ± 0.093569 ng/μL, day 3 was 1066.333 ± 0.117372 ng/μL, and day 7 was 1054.083 ± 0.070733 ng/μL.PCR工艺使用了带有基因座VWA,FGA和TH01的STR引物,并且可视化使用了硝酸银方法。结论:最终结果表明,所有样品都可以使用3个str基因座,即VWA,FGA和TH01进行扩增。马来西亚医学与健康科学杂志(2023)19(5):97-101。 doi:10.47836/mjmhs19.5.14马来西亚医学与健康科学杂志(2023)19(5):97-101。 doi:10.47836/mjmhs19.5.14
前室深度(ACD)是与一角闭合青光眼(PACG)相关的定量性状。尽管ACD高度可遗传,但已知的遗传变异解释了表型变异性的一小部分。这项研究的目的是使用小鼠菌株鉴定附加的ACD影响基因座。由86 N2和111 F2小鼠组成的队列是由重组近近近近近近将BXD24/ TYJ和野生衍生的铸造/ EIJ小鼠之间的十字产生的。使用前腔室光学相干断层扫描,在10-12周龄时表现出小鼠,基于93个全基因组SNP进行基因分型,并进行定量性状基因座(QTL)分析。在对所有小鼠的ACD分析中,六个基因座通过了p = 0.05的显着性阈值,并在多次回归分析后持续存在。这些是在染色体6、7、11、12、15和17上(分别为ACDQ6,ACDQ7,ACDQ11,ACDQ12,ACDQ15,ACDQ15和ACDQ17)。我们的发现证明了在小鼠中ACD遗传的定量多生成术,并确定了六个先前未识别的ACD影响基因座。我们采用了一种独特的方法来研究前室深度表型,通过使用小鼠作为遗传工具来检查这种连续分布的性状。
POD破碎是农业相关性的一种特征,可确保植物在其本地环境中取代种子,并在几种宽阔的农作物中受到了驯化和选择的驯化和选择。然而,豆荚破碎会导致菜籽(甘蓝纳普斯L.)作物的显着屈服降低。衍生自B. rapa/b的种间繁殖线BC95042。Napus Cross表现出改善的POD破碎阻力(比易碎的B. Napus品种高达12倍)。为了揭示新品种中的遗传基础并改善了POD破碎的耐药性,我们分析了F 2和F 2:3衍生的种群,来自BC95042和Advanced Breeding系列的交叉,BC95041,并用15,498 Dartseq标记的基因分型。通过基因组扫描,间隔和包容性的复合间隔映射分析,我们确定了与POD破裂能量相关的七个定量性状基因座(QTL),用于POD破碎的抗性或POD强度的度量,并且它们位于A02,A02,A03,A03,A05,A09,A09,A09和C01 Chromosomes上。两种亲本线都为豆荚碎片抗性贡献了等位基因。我们确定了添加剂X添加剂,添加性优势和优势X优势X在A01/C01,A01/C01,A03/A07,A07/C03,A03,A03/C03和C01/C02染色体之间的相互作用之间的五对X添加剂,添加剂优势和优势X优势相互作用。QTL对A03/ A07和A01/ C01的影响处于排斥阶段。比较映射确定了几种候选基因(AG,ABI3,BP1,CEL6,FIL,FIL,FUL,GA2OX2,IND,LATE,LEUNIG,MAGL15,RPL,QRT2,RGA,RGA,SPT,SPT和TCP10),基于QTL和QTL的QTL和上毒QTL相互作用,以实现pod shatter pod shatter shatter shatter shatter shatter shatter shatter shatters。BNAA09G05500D受到在A02,A03和A09上检测到的三个QTL靠近(富有成果的)同源物BNAA03G39820D和BNAAA09G05500D。着眼于FUL,我们研究了推定的图案,序列变体和其同源物的进化速率,373个重新设备的B. napus napus感兴趣。
单细胞技术的最新进步已实现了单细胞分辨率下许多个体的表达定量性状基因座(EQTL)分析。与散装RNA测序相比,该测序平均在细胞类型和细胞状态下平均基因表达,单细胞测定法捕获了单个细胞的转录状态,包括以前所未有的规模和分辨率的细胞,瞬态和难以隔离的群体。单细胞EQTL(SC-EQTL)映射可以识别与细胞态不同的上下文依赖性eqtl,包括一些与基因组关联研究中鉴定出的差异变体共定位的一些。通过揭示这些EQTL行为的精确上下文,单细胞方法可以揭示以前隐藏的调节效应,并确定重要的
遗传改进计划需要简单,快速和低成本的工具来筛选大量人群。近红外的反射光谱(NIR)已被证明是一种可靠的技术,可以预测D. alata山药物种中主要的块茎成分。9,10然而,由于光谱是由我们的样品而不是从原始样本产生的,因此该协议需要长时间的样本处理时间,并且仍然很难适用于大量基因型。标记辅助选择可能是促进育种工作的高通量方法。的确,随着新一代测序技术的发展,搜索与互动特征相关的基因组区域变得更加容易。已经对山药进行了一些研究,以阐明块茎质量相关特征的遗传决定论。通过在两个双阶层种群上使用定量性状基因座(QTL)映射方法,已经确定了与重要形态和农艺块茎质量性状相关的几个基因组区域。11在包括八种不同的二若氏种类(包括八种不同的二维体物种)上估算了DMC的遗传力。12在D. alata中进行了全基因组关联研究,可以鉴定与与DMC相关的一些单核苷酸多态性(SNP)标记。13
。cc-by-nc 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
糖尿病和癌症是两种异源性疾病,全球流行率正在迅速增加。这两种非传染性疾病之间的联系首先在100年前被发现;然而,最近的流行病学研究和基因组研究的进展为糖尿病与癌症之间的关联提供了更多的了解。流行病学研究表明,糖尿病患者患几种类型的癌症的风险增加(包括肝脏,胰腺,结直肠癌,乳房和子宫内膜),并且癌症死亡率的风险增加。但是,在所有癌症中均未观察到这种增加的风险,例如,糖尿病患者的前列腺癌风险降低。也已经观察到癌症患者患糖尿病的风险增加,强调这些疾病之间的关系并不直接。共享遗传病因的证据以及许多生活方式和临床因素使确定两种疾病之间的关系是因果关系还是混杂因素的结果,这一挑战。本综述采取了一种泛滥的方法来突出2型糖尿病与癌症发展之间相互作用的复杂性,这表明基因组研究的进步使这两种疾病的进步使得更加了解。