最近已经开发了一种用于确定双向DNA复制起源的物理位置的一般方法,并证明能够正确识别Simian病毒40复制的起源(L. vassilev和E. M. Johnson,Nucleic Acids,Res。17:7693-7705,1989)。该方法比以前报道的其他方法的优点是,它避免了使用代谢抑制剂的使用,细胞同步的需求以及对原点序列的多个副本的需求。将这种方法应用于含有未扩增的单拷贝二氢叶酸还原酶基因基因座的非扩增,单拷贝的卵巢凝胶的应用显示,DNA的复制在大约2.5千千公斤的起始区域开始,大约2.5个千千万酶,长期以来,长期以来,长期以来,大约17千千千万的基础与DHFR Gene的下降序列相结合,以前是早期复制的。这些结果证明了该映射方案用于识别复制的celular起源的实用性,并建议在正常和放大的DHFR基因座中使用相同的cedlular起源。
。cc-by-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
高阶结构组织和染色体的动力学在基因调节中起着核心作用。为了说明这种结构 - 功能关系,有必要直接可视化活细胞中的基因组元素。基于CRISPR系统的基因组进化是一种强大的方法,但由于背景信号和核团体内荧光团的非特异性聚集而具有有限的适用性。为了解决这个问题,我们开发了一种新型的可视化方案与Suntag系统合并三方荧光蛋白,并证明它强烈抑制了背景荧光和放大基因座特异性信号,从而可以长期跟踪基因组基因座。我们将多组分CRISPR系统整合到稳定的细胞系中,以允许对基因组基因座动态行为进行定量和可靠的分析。由于信噪比的高度升高,即使在常规的荧光显微镜下,也只能成功跟踪少量序列重复序列的目标基因座。此功能使基于CRISPR的成像应用于整个基因组的基因座,并为研究活细胞中的核过程开辟了新的可能性。
微卫星基因座仍然代表着研究非模型或Ganism的人口生物学的宝贵资源。发现或适应感兴趣的物种中的新合适的微卫星标记仍然是一项有用的任务,尤其是对于非模型生物作为采集果蝇(Glossina属),这仍然是对撒哈拉以南非洲人类和动物健康的严重威胁。在本文中,我们介绍了四种Glossina种类的新微卫星基因座的开发:来自摩西丹组的两个,来自津巴布韦的G. Morsitans Morsitans(GMM),G。Pallidipes(Gpalli),来自坦桑尼亚;还有来自帕尔帕里斯集团的其他两个,来自乍得的G. fuscipes fuscipes(GFF),以及几内亚的G. palpalis gambiensis(gpg)。我们发现频繁的短等位基因优势和无效等位基因。也可以在可能的情况下找到并修改。神秘的物种似乎在所有分类单元中都发生了频率。这解释了为什么很难找到普遍的引物,因此需要根据每个分类学和地理环境进行适应。放大问题在已发表的旧标记中更常见,而GMM和GPG受到影响最大(杂合差较强)。三核苷酸标记在某些情况下显示选择签名(GMM)。最后,迄今为止研究的采集蝇的非Y DNA量和染色体结构来解释了X连锁标记的高比例(约30%)。将旧基因座组合起来,对于GMM,可以安全地使用八个基因座(对无效等位基因进行校正);五个似乎特别有希望。对于GPALLI,只有五到三个基因座效果很好,具体取决于进化枝,这意味着使用其他物种的基因座(四个Morsitans loci似乎效果很好),或者需要使用其他新的引物;对于GFF来说,14个基因座表现良好,但是有无效的等位基因,其中7个效果很好。对于G. palpalis SL来说,只有四个基因座,需要无效的等位基因和口吃校正,似乎需要效果很好,因此需要其他文献中的其他基因座,包括X连锁标记,其中五个似乎效果很好(仅在女性中),但是新标记可能需要新的标记。
分析的所有STR基因座是标准欧洲套件集的一部分(欧洲法医科学研究所网络(欧洲法医学网络。 div>对其他基因座的分析包括ENFSI和EDNAP(欧洲DNA分析组)建议的源。 div>
图 4. SeqStudio Flex 和 3500xL 仪器在 MSI 分析中产生了相似的数据。(A)TrueMark MSI 检测分析了 13 个微卫星基因座的不稳定性,包括广泛使用的 Bethesda 标准。确定为不稳定的基因座可以自动调用;然后软件将使用全部调用对样本进行总体调用。该检测包括两个高度可变的短串联重复 (STR) 序列 (THO1 和 PentaD),可用于确认样本身份。该软件使用的专有算法不需要并行分析正常的非肿瘤组织即可进行稳定/不稳定调用。(B)使用 TrueMark MSI 检测分析了九个肿瘤/正常相邻对和一个仅肿瘤样本。使用两种仪器的数据,软件调用的基因座数量非常相似。样本 S07-001886-A5 回收的 gDNA 不理想;并非所有基因座都以同等方式扩增,因此在两种仪器上产生的结果略有不同。
哺乳动物细胞中的遗传筛选通常专注于功能丧失方法。评估额外基因拷贝的表型结合,我们使用了辐射杂种(RH)细胞的大量分离分析(BSA)。,我们构建了六个RH细胞池,每个池由约2500个独立克隆组成,并将池放置在带有或没有紫杉醇的培养基中。低通序测序鉴定出859个生长基因座,38个紫杉醇基因座,62个相互作用基因座和三个基因座,用于整个基因组显着性,用于线粒体的丰度。分辨率被测量为约30 kb,接近单基因。差异性能,反驳了平衡假设。此外,在RH池中人类centromeres的保留增强提出了一种对这些染色体元件的功能解剖方法的新方法。对RH细胞的合并分析显示出高功率和分辨率,应该是哺乳动物遗传工具包的有用补充。
标题日期(HD)是由多个基因座控制的至关重要的农艺性状,它可以探讨大米(Oryza sativa L.)的一系列地理和季节性适应。因此,有关跨父母HD基因型的信息对于标记辅助育种计划至关重要。在这里,我们使用Fluidigm 96-Plex SNP基因分型平台来开发基因分型测定,以确定41 HD基因座的等位基因(29个先前具有特征性的基因和12个定量性状基因座[QTLS],包括新检测到的QTL)。基因分型测定总共区分了144个等位基因(根据文献和公开可用的数据库定义)和QTL。377个品种的基因分型平均显示3.5个等位基因,HD1,GHD7,PRR37和DTH8的多样性高于其他基因座的基因分型,而参考(“ Nipponbare”)基因型在41个基因座的30型中的占主导地位。HD预测模型使用来自200个品种的数据显示出良好的相互作用(r> 0.69,p <0.001),当时用22种未包含在预测模型中的品种进行测试。因此,开发的测定法提供了有关HD的基因型信息,并将实现具有成本效益的繁殖。
哺乳动物细胞中的遗传筛选通常集中在功能丧失方法上。为了评估额外基因拷贝的表型后果,我们使用了辐射杂种(RH)细胞的大量分离分析(BSA)。,我们构建了六个RH细胞池,每个池由约2500个独立克隆组成,并将池放置在带有或没有紫杉醇的培养基中。低通序测序鉴定859个生长基因座,38个紫杉醇基因座,62个相互作用基因座和3个基因座,用于跨基因组的明显限度,用于线粒体丰度。分辨率被测量为约30 kb,接近单基因。的分歧性质,从而反驳了平衡假设。此外,在RH池中,人类丝粒的保留增强表明,这些染色体元素的功能解剖方法是一种新的方法。对RH细胞的合并分析显示出高功率和分辨率,应该是哺乳动物遗传工具包的有用补充。
图 3. SeqStudio Flex 和 3500xL 仪器在 MSI 分析中产生了相似的数据。(A)TrueMark MSI 检测分析了 13 个微卫星基因座的不稳定性,包括广泛使用的 Bethesda 标准。确定为不稳定的基因座可以自动调用;然后软件将使用全部调用对样本进行总体调用。该检测包括两个高度可变的短串联重复 (STR) 序列 (THO1 和 PentaD),可用于确认样本身份。该软件使用的专有算法不需要并行分析正常的非肿瘤组织即可进行稳定/不稳定调用。(B)使用 TrueMark MSI 检测分析了九个肿瘤/正常相邻对和一个仅肿瘤样本。使用两种仪器的数据,软件调用的基因座数量非常相似。样本 S07-001886-A5 回收的 gDNA 不理想;并非所有基因座都以同等方式扩增,因此在两种仪器上产生的结果略有不同。