使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。应自行审查每个覆盖范围请求。医疗总监有望行使临床判断,并在做出个人覆盖范围确定方面有酌处权。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
与使用病毒作为遗传物质来源插入基因组的传统基因编辑机制相比,CRISPR/Cas9 可以对活细胞的 DNA 进行有针对性的精确改变,并已显示出作为血红蛋白病患者基因治疗的前景 (4)。为了保证β地中海贫血患者的生存,需要定期输血以维持足够的血红蛋白水平并减少骨骼畸形(3)。基因治疗的目的是通过从患者的外周血中分离干细胞来扩大胎儿血红蛋白的产生。然后,CRISPR/Cas9 发挥作用,沉默 BCL11A 基因,改变细胞并导致胎儿血红蛋白的产生增加。经过编辑的细胞经过骨髓的成髓细胞调节后输入患者体内,促进功能性血红蛋白的替换和缺陷血红蛋白的替换 (4)。
©2024 Emerging Therapy Solutions,Inc。保留所有权利。AP-10952 V1。ETS是新兴治疗解决方案公司的商标。据信,此处提供的信息在列出的文档生产日期开始是准确的,并且基于当前可用的信息。由于可能发生设施和计划的更改,请通过877-445-4822或MedicalServices@emergingtherapies.com与我们的ETS临床顾问确认详细信息。请注意,任何指示服务的承保范围都受到适用的计划文件的约束。02/27/2024
基因治疗的前景首次出现在 20 世纪 70 年代[1],并在随后的二十年里进行了多次尝试。人们对这种方法的热情相当高,法国抗肌病协会 (AFM) 及其年度募捐活动在法国采取的行动进一步加强了这种热情。我几年前在专栏文章中报道过 [2] ( ➜ ),法国商界杂志《新媒体》在 1994 年预测,到 2010 年,基因治疗的市场规模将达到 500 亿美元。但事实上,当时基因治疗的市场规模几乎为零,所进行的试验均未产生真正确凿的结果,其中一项试验甚至导致 1999 年年轻志愿者杰夫·盖尔辛格 (Jeffe Gelsinger) 死亡。在随后的几年里,相关实验室一直致力于更好地理解引入携带治疗基因的载体时所涉及的细胞机制,改进这些载体及其给药方法,增加转移基因的表达,这些研究最终取得了一些真正的成功,特别是在治疗血友病方面 [3] ( ➜ )。
原发性免疫缺陷 (PID) 是一种遗传性、危及生命的疾病,其特征是易受感染、恶性肿瘤风险增加、自身免疫和炎症。它们的出现是由于 300 多个基因出现异常,这些基因控制着先天性和适应性免疫系统中一系列免疫亚群的发育或功能。1 在全球范围内,它们是一种罕见疾病,发病率为 1:10 000 个新生儿,2 尽管在近亲结婚率较高的国家,3 或存在创始突变的人群中,这一数字可能会高出 20 倍。4-6 症状通常出现在儿童时期,历史上治疗选择有限,主要集中在支持性治疗,造血干细胞移植 (HSCT) 是唯一的治愈方法。随着时间的推移,这项技术已经发展起来,在某些情况下,相关的发病率和死亡率已大幅降低。然而,成功仍然很大程度上取决于能否获得良好的人类白细胞抗原 (HLA) 匹配供体,在因移植物抗宿主病 (GvHD)、感染和移植物排斥而导致的错配情况下,存活率会降低。在没有合适的 HLA 匹配供体的情况下,自体基因校正干细胞疗法提供了一种有吸引力的替代方案,有可能避免 GvHD,并且通常能够使用毒性和免疫抑制性较低的预处理方案。作为免疫系统的奠基者,造血干细胞 (HSC) 提供了一个相对容易获得的治疗目标,无论是通过直接骨髓采集,还是最近首选的白细胞分离术。在粒细胞集落刺激因子 (G-CSF) 和普乐沙福介导的从骨髓到外周的动员后,采集
基因治疗是一种新技术,利用来自多个来源的基因来治疗或预防不同的疾病。该技术通过将基因插入患者细胞而不是使用药物或手术来治疗疾病(包括遗传性疾病、某些类型的癌症和某些病毒感染)。该技术的原理包括替换、灭活或将新基因引入体内,用于代谢操纵、基因增强或手术方法。基因治疗采用多种技术插入新基因,既可以使用病毒载体(逆转录病毒、腺病毒),也可以使用非病毒载体(注射裸露的 DNA、增强基因传递的物理方法(电穿孔、声孔)或增强基因传递的化学方法(寡核苷酸、混合方法)。这种新技术有许多优点和缺点,此外还存在许多使其在实践中难以应用的伦理和社会问题。科学家认为,基因治疗是治疗不同类型疾病最有前途的应用。基因治疗在医学领域正在兴起;科学家相信,20 年后,这将是所有遗传病的最后治疗方法。
Judith 是 FDA、CBER 组织和先进疗法办公室 (OTAT) 的国际监管专家。她在 OTAT 的主要职责是促进细胞、组织和基因疗法监管要求的国际协调,并领导 OTAT 监管产品的标准制定活动。在标准方面,她与国家标准与技术研究所和标准协调机构密切合作,以促进先进疗法的标准制定。她代表 FDA 参加 ISO 技术委员会 276、生物技术、ASTM F04 组织工程产品委员会和肠外药物协会标准委员会。她在国际监管要求协调方面的工作包括担任国际药品监管机构计划细胞治疗工作组和基因治疗工作组的秘书处。她是亚太经合组织监管协调小组委员会先进疗法优先工作领域的联合主席,并担任东北大学监管卓越中心和杜克大学医学院-新加坡国立大学监管卓越计划的教员。
在过去的几十年里,位点特异性DNA结合蛋白极大地改变了生物技术和医学研究领域。然而,由于开发针对特定靶位的DNA结合蛋白的复杂性,基因编辑通常需要蛋白质工程师[1]。CRISPR/Cas技术的进步极大地扩展了生物研究人员的分子工具箱[2]。CRISPR/Cas系统是在细菌和古细菌中发展起来的一种适应性免疫系统,可用于防御外源遗传元件。在细菌和古细菌中,进化的Cas蛋白可以切割入侵病毒和质粒的核酸[1]。此外,细菌细胞可以使用CRISPR-Cas系统保护自己免受再次感染。CRISPR/Cas通过插入一小段外源DNA在第一次感染防御后赋予一种免疫记忆[3]。因此,CRISPR-Cas系统可以为宿主提供保护