近年来,靶向治疗和免疫治疗已成为非小细胞肺癌(NSCLC)的有效治疗手段。随着诊疗技术的飞速发展和新药的不断研发,NSCLC的精准医疗已进入新纪元。这对于携带常见EGFR基因突变的NSCLC患者来说是一个重大突破,靶向药物的应用显著提高了生存率。然而,有一类罕见的基因突变被称为EGFR外显子20插入(ex20ins)突变,其结构不同于常规的EGFR基因突变,即外显子19缺失突变(19-Del)和外显子21点突变。由于其结构特点不同,携带这些EGFR ex20ins突变的患者对传统的酪氨酸激酶抑制剂(TKI)疗法没有反应,这部分患者不属于其适用范围。然而,激活的 A763_Y764insFQEA 突变引起的反应比紧随其后的 C 螺旋近区和远区的突变更明显,因此应区别对待。目前,缺乏针对 EGFR ex20ins 突变 NSCLC 的有效治疗方法。化疗的疗效相对较好,而由于临床数据不足,免疫疗法的疗效仍不明确。此外,第一代和第二代靶向药物的疗效仍然有限。然而,第三代和新型靶向药物已被证明是有效的。虽然新型 EGFR-TKI 有望治疗 NSCLC 患者的 EGFR ex20ins 突变,但它们面临着许多挑战。本综述主要关注针对 EGFR ex20ins 的 NSCLC 的新兴疗法,并强调正在进行的主要临床试验,同时概述该领域的相关挑战和研究进展。
利用基因编辑技术,成功培育出携带与导致 RTD 2 型的 SLC52A2 基因突变相同的基因突变的小鼠(“RTD 小鼠”)。这些 RTD 小鼠的早期版本在出生前就死亡了。然而,通过在怀孕期间为母亲提供高剂量的核黄素 (FMN) 以及在试验不同的 SLC52A2 基因突变组合和小鼠品种后,成功的 RTD 小鼠可以活着出生以供研究。培育这些 RTD 小鼠主要是为了证明 RTD 基因疗法的安全性和有效性,这是开始人类临床试验前的必要步骤。该基因治疗项目是与德克萨斯州西南德克萨斯大学 (UT) 的 Steven Gray 博士合作进行的。这些 RTD 小鼠还将用于研究导致 RTD 的机制并开发其他新的 RTD 治疗策略。在开始基因治疗试验之前,有必要了解这些 RTD 小鼠的症状和存活率。该项目跟踪了未接受任何治疗或接受与 RTD 患者接受的类似核黄素治疗的 RTD 小鼠组。在研究结束时,测量了小鼠血液和大脑中的核黄素水平(RF、FMN 和 FAD)。导致视力丧失的视神经萎缩是 2 型 RTD 患者最常见的早期症状之一。根据这些信息,18 只 RTD 小鼠的眼睛也被解剖以寻找眼部疾病的迹象。我们很高兴地宣布,这个项目已经完成。这项研究的结果令人鼓舞,表明应该继续对这些 RTD 小鼠进行基因治疗试验。关于 Jackson Laboratories
摘要 牙釉质细胞瘤是亚洲最常见的牙源性肿瘤之一。在过去的十年中,许多研究表明丝裂原活化蛋白激酶(MAPK)信号通路,尤其是细胞外信号调节激酶1/2(ERK1/2)信号通路存在基因突变。成纤维细胞生长因子受体2(FGFR2)、大鼠肉瘤病毒(RAS)和B型快速加速纤维肉瘤(BRAF)的突变能够引起ERK1/2信号通路的持续激活,从而使肿瘤细胞增殖不受控制。由于ERK1/2信号通路在细胞生长和细胞存活中的作用,该通路的上调可导致大约三分之一的人类肿瘤,包括牙釉质细胞瘤。在发现几种癌症的基因突变后,许多抑制剂被设计出来以针对这些突变。在此,我们回顾了成釉细胞瘤中 FGF-MAPK 信号通路的改变,以及作为成釉细胞瘤辅助或新辅助治疗的靶向治疗,特别是在需要进行广泛手术切除的情况下。
杜安退缩综合征 (DRS) 的特征是眼球运动受限。其原因之一是 CHN1、MAFB 或 SALL4 基因突变。如今,DRS 的治疗仅限于戴眼镜、遮挡和手术。然而,这种治疗无法治愈疾病的遗传问题。另一种值得考虑的治疗策略是 CRISPR/Cas9,这是一种用于进行基因编辑的工具,具有广泛的应用范围,包括治疗遗传疾病。我们使用 CCTop 网站在计算机上制作了 sgRNA,作为使用 CRISPR/Cas9 治疗 DRS 的第一步。通过计算 sgRNA、进行测试和分析结果,CRISPR/Cas9 可以修复基因突变。目前,尚无关于在 DRS 中使用 CRISPR/Cas9 的报道。因此,这项研究将作为使用 CRISPR/Cas9 治疗 DRS 的起点非常有用。但还需通过体内、体外及临床试验研究进一步验证。
中外制药获批 FoundationOne CDx 癌症基因组图谱可用作 PARP 抑制剂 Talazoparib 的伴随诊断,而 Talazoparib 已获批用于治疗 BRCA 基因突变阳性且伴有远处转移的去势抵抗性前列腺癌
Crispr-Cas9 在牙科中的应用 基因疗法 与牙科疾病相关的基因突变,如牙釉质形成不全症和牙本质形成不全症,可以通过 CRISPR-Cas9 进行纠正 [2, 3]。此外,针对颅面发育基因的靶向修饰有望治疗先天性畸形 [4]。
divenne肌肉营养不良是由DMD基因突变引起的X连锁遗传肌肉疾病。肌营养不良蛋白稳定肌纤维的细胞膜,缺乏肌营养不良蛋白会导致骨骼肌和心脏的功能逐渐丧失,最终导致死亡。
癌症的特点是遗传、转录和表型异质性,这些异质性会影响癌症进展、转移和耐药性 (Lawson 等人 2018;Hinohara 和 Polyak 2019)。表观遗传变化是造成大部分转录异质性的原因,而这些转录异质性并非由潜在突变引起。表观遗传改变比体细胞突变更常见,但两者之间存在显著的相互作用,因为表观遗传沉默可导致基因突变,反之,基因突变可改变表观遗传过程 (Brzezia ń ska 等人 2013;Chatterjee 等人 2018)。肺癌尤其以明确的基因驱动突变以及全局和位点特异性表观遗传修饰为特征。表观基因组失调与吸烟相关和不相关的恶性转化有关,并在获得癌症特征(如细胞增殖增加、抗凋亡、血管生成和转移)中起关键作用
1。BT作物在农业中的意义是什么,标记基因在BT作物中的重要性有多?(5分)2。解释孟德尔继承原则。(5分)3。讨论了基因突变在遗传疾病发展中的作用。(5分)4。氧气转移在生物反应器操作中扮演什么角色,如何优化它?(5分)