警告:由于基金并不能防止汇率,因此两个投资者可能会损失或不会从汇率/或获得退款的退款中,该投资在过去的运营/与资本市场中与产品相关的运营比较的结果/结果的结果并不是对资本运营投资的结果的听证会,这不是存款和投资的风险。投资者可能会在初始投资上获得更多或多或少的投资。并且可能无法在指定期限内收到投资单位的销售成本,也可能无法按订购的投资单位出售投资单位。该基金投资于集中度。在医疗保健行业类别中,投资者可能会失去投资的风险。在投资决策之前,应仔细了解产品特征奖励条件和风险,然后才能将投资 /文件决策与基金概况一起使用。在所有泰国军事银行,泰国军事基金管理公司和销售支持者,并回购投资单位。 div>
•这是世界上所有领域的首要发展,包括在微生物中繁殖有用的菌株,农业,渔业和牲畜产品的繁殖,以及将其应用于基因治疗,通过大学机构,大型公司,大型公司,大型公司,捐赠公司之间的密切协作,可以改善研究和发展能力。许多风险投资公司,包括酥脆的治疗剂,编辑医学,内部治疗疗法和光束治疗药,正在从事农作物开发,工业能源开发和人类疾病治疗方面的尖端研究与发展。 •CRISPR/CAS9,CAS12A,CAS13以及许多与CRISPR相关的基本技术和应用技术知识产权都得到了保护。 •Talaen的高油酸大豆的生产和工业用途已经发展。 •主动促进体内和离体基因组编辑处理。 Laber先天性黑色素症,经胸蛋白淀粉样变性和镰状细胞疾病的临床试验已经开始如体内基因组编辑治疗。 •计划进行体内基础变体疗法(镰状细胞疾病)的临床试验。 •使用ZFN和CRISPR进行基因组编辑治疗的研发临床试验以及更安全的表观基因组编辑治疗正在进行中。已有30多次临床试验参加了FDA,领先的基因治疗研究。 •新型核酸检测技术(夏洛克和检测方法)已经开发出来,并正在作为新型冠状病毒中POCT的诊断剂开发。
自从DNA双螺旋结构被发现以来,基因组研究的范围不断扩大,我们对基因组的认识也得到了极大的进步;与此同时,许多模式生物的全基因组测序已经完成,而基因组编辑技术也正在迅速普及。过去的基因组研究主要集中在基因组信息的复制、修复、重组、分裂等信息层面,并进一步强调表观遗传调控来解释遗传现象。另一方面,DNA的物理性质,如硬度、扭转、超螺旋等,虽然是直接影响基因组结构的重要性质,但人们对其了解甚少。在本项目中,我们将重点研究基因组/DNA的物理性质,以了解基因组如何构建其结构以及如何发挥作用。我们将“基因组模态”定义为组织基因组结构和功能的多维模式。我们将从基因组模态的角度揭示基因组的真实面貌。为此,我们运用生物化学、细胞生物学、基因组科学、高分子物理学等方法,开辟了研究“基因组形态”的新领域。【研究项目内容】
近年来,随着基因组技术和分析方法的传播,遗传性遗传疾病以及各种癌症的差异诊断,预后的确定,该疾病的后果在开创性速度方面发展了发展。基因组方法,可快速,同时确定患者基因组中的遗传或体细胞突变,为更快地检测原始治疗目标铺平了道路。基因组分析方法包括整个基因组序列(WGS),整个外部布置(WES)和靶向排列以及整个转录序列(WTS)。可能与癌症和其他遗传疾病发展有关的许多突变和转录已通过诸如整个外部排列,整个基因组序列和所有转缩序列等方法确定。在多种突变共同促进的遗传疾病中,特殊设计的靶向基因面板在诊断和预后改善的背景下具有巨大的潜力。此外,通过超靶向的序列确定循环无DNA突变的是诊断遗传疾病,包括癌症,预后和对治疗反应的估计。通过基因组分析也可以使用有关Covid-19疾病对我们当前生活的临床重要信息。在本书部分中,它重点介绍了基因组方法在生物多样性领域的当前和潜在应用。近年来基因组方法中最突出的方法之一是通过CRISPR-CAS9进行的基因组调节,此方法的各种应用为遗传疾病和基因表征提供了机会。
比较 EnGen Spy Cas9 NLS、EnGen Spy Cas9 HF1 和其他市售高保真 Cas9 变体的引导 RNA 序列与靶 DNA 序列之间的错配容忍度。允许编码与荧光标记的 dsDNA 底物单、双或三错配的几种引导 RNA 之一与五种 Cas9 变体中的每一种形成核糖核蛋白 (RNP) 复合物。包括完全匹配的引导 RNA 作为对照。将 RNP 与底物以 2:1 的比例在 37°C 下孵育 5 分钟。通过毛细管电泳测量每个 RNP 复合物的底物裂解百分比。结果绘制为热图,白色表示无裂解,蓝色强度增加表示裂解百分比增加。每行均标明引导 RNA 序列,错配以绿色表示。 DNA 原型间隔序列为 5´ – AGAACTGGCAGAGGAGGTAG – 3´,原型间隔相邻基序 (PAM) 为 5´– TGG – 3´。EnGen Spy Cas9 HF1 显示出最高的靶向切割与平均脱靶切割比率,从而表明对错配的敏感性增加。
Glycyrrhizin是一种三萜皂苷,是Medicinal Plant Licorice(Glycyrrhiza Uralensis,G。Glabra和G. glabra和G. forfata)中包含的一种主要活性成分,并且在全球范围内用于多样化的应用程序,例如Herbal Medicines和Seeltbal MediceSealsens和Seeltealsealseperines。对甘草的需求不断增长,威胁着野生资源,因此需要一种可疑的供应糖依氏素的方法。目的是建立一种不取决于野生植物的替代性糖素供应方法,我们试图使用毛茸茸的根培养产生糖依氏菌素。我们试图通过使用基于CRISPR/CAS9的基因编辑来阻止竞争途径来促进糖素的产生。CYP93E3 CYP72A566双敲击(KO)和CYP93E3 CYP72A566 CYP716A179 LUS1四倍体-KO变体,并在两种类型的毛毛根中都证实了大量的糖酰藻蛋白。此外,我们评估了通过同时CYP93E3 CYP72A566 Double -KO和CYP88D6 -Over Exprespression促进进一步的糖素产生的潜力。这种策略在双ko/ cyp88d6-offertexpression中的糖素积累中增加了3倍(〜1.4 mg/ g),与双旋毛根相比,平均生成的毛状根部增加了3倍。这些发现表明,封闭途径的结合和生物合成基因的过表达对于增强G. uralensis毛状根部的糖依氏菌素产生至关重要。我们的发现为使用毛茸茸的根系构成可持续性糖素的生产奠定了基础。鉴于基因组编辑技术在多毛根中的广泛使用,这种结合与基因敲除和过表达相结合,可以广泛应用于各种植物根中包含的有价值物质的生产。