在本文中,我们提出,设计和评估一个系统的定向模糊框架,以自动在任意蓝牙经典(BT)设备中自动发现构成错误。我们的fuzzer的核心是第一个直播方法,它可以完全控制主机的BT控制器基带。这使我们能够拦截和修改任意数据包,并在封闭源BT堆栈的下层中注入数据包,即链接管理器协议(LMP)和基数。为了系统地指导我们的模糊过程,我们提出了一种可扩展且基于新颖的规则的方法,用于在非空中通信期间自动构建协议状态机。尤其是,通过编写一组简单的规则来识别协议消息,我们可以二合作构建一个抽象的协议状态计算机,由状态产生的模糊数据包并验证来自TAR- GET设备的响应。截至今天,我们已经从11位供应商那里融合了13个BT设备,并且我们发现了总共有18个未知的突出量,并分配了24个常见脆弱性暴露(CVE)。此外,我们的发现获得了某些供应商的六个漏洞赏金。最后,为了显示BT以外的框架的更广泛的适用性,我们扩展了绒毛其他无线协议的方法,该协议还显示了某些Wi-Fi和Ble主机堆栈中的6个未知错误。
1. 计算技能:基本编程结构:数据类型、数组、指针、链接列表和树、语句、I/O、条件、循环、函数、类/对象。 2. 通信技术:通信标准、2G/3G/4G/5G、ZigBee、BLE、Wi-Fi、LTE、IEEE 802.11x、数据速率、覆盖范围、功率、计算、带宽、传感、处理、通信供电、通信网络、拓扑、层/堆栈架构、QoS。 3. 通信系统:通信系统的物理层描述、量化、数据格式化和成帧、点对点链路的容量、链路预算分析、多址技术、网络路由 4. 数据分析:组合学、有限样本空间上的概率、联合和条件概率、独立性、总概率;贝叶斯规则及应用。 5. 数字通信:通带表示、基带等效 AWGN 信道、数据调制和解调、调制波形的合成、离散数据检测、加性高斯白噪声 (AWGN) 信道、使用匹配滤波器实现信噪比 (SNR) 最大化、AWGN 信道的误差概率、MAP 和 ML 检测、数字调制技术、无线信号传播和信道模型。6. 数字信号处理:采样、连续和离散时间变换、LTI 系统的频域分析、FFT 实现、算法、滤波器设计:IIR 和 FIR 滤波器、采样率转换。
摘要 — 自动雷达信号识别 (RSR) 在电子战 (EW) 中起着关键作用,因为准确分类雷达信号对于为决策过程提供信息至关重要。深度学习的最新进展显示出在具有大量注释数据的领域中提高 RSR 性能的巨大潜力。然而,这些方法在注释 RF 数据稀缺或难以获得的 EW 场景中就显得不足了。为了应对这些挑战,我们引入了一种自监督学习 (SSL) 方法,该方法利用掩蔽信号建模和 RF 域自适应来增强 RF 样本和标签有限的环境中的 RSR 性能。具体而言,我们研究了对来自不同 RF 域的基带同相和正交 (I/Q) 信号进行预训练掩蔽自动编码器 (MAE),然后将学习到的表示转移到注释数据有限的雷达域。实证结果表明,与不使用 SSL 的基线相比,我们的轻量级自监督 ResNet 模型在域内信号(即雷达信号)上进行预训练时,1 次分类准确率可提高 17.5%,在域外信号(即通信信号)上进行预训练时,1 次分类准确率可提高 16.31%。我们还为几种 MAE 设计和预训练策略提供了参考结果,为少样本雷达信号分类建立了新的基准。索引术语 — 少样本、雷达信号识别、域自适应、自监督学习、掩蔽自动编码器
Cimetrix 创新工厂自动化软件,包括 CIMConnect、SECSConnect、HostConnect、TestConnect、CIM300、CIMPortal、CIMTester、ECCE Plus、EDAConnect、CIMControlFramework Cyberlink FaceMe 面部识别 SDK Dexerials ACF/粘合剂/表面贴装型保险丝/导热片 Dosilicon SPI NOR、SPI/SLC NAND、MCP、DDR、KGD Eggtronic AC/DC PWM IC、无线 PWM IC Egis 指纹打印机 ELATEC RFID 系统,具有多频(LF+HF+NFC+蓝牙 LE)/多应答器/多认证 Eleven Engineering SKAA™、专有协议/音频无线发射器模块 Enovix 电池(包括定制和非定制) ESMT eMMC、eMCP、LPDDR、DRAM IC、NOR Flash、SLC Flash 快速 SiC SiC MOSFET、SiC肖特基二极管和 SiC 模块、SiC 裸片 Fitipower DC/DC 转换器、LDO、电源开关 FocalTech 触摸屏控制器、LCD 驱动器 IC、In-cell IC Framos 摄像头模块、深度摄像头模块和 ISP 调试服务 FURUNO GNSS 接收器模块和芯片 GCT 4G LTE、NB-IoT 和 Sigfox 基带和 RF GigaDevice DDR3 和 DDR4 DRAM 芯片 GlobalTech MOSFET、LDO、肖特基二极管、TVS 二极管 GoMore 健身/健康算法和 AI 教练解决方案提供商 GP(Goldpeak)电池
摘要 本文提出了一种低功耗宽带射频到基带 (BB) 电流复用接收器 (CRR) 前端,它同时利用了 1/f 噪声消除 (NC) 技术和有源电感器 (AI),工作频率为 1 GHz 至 1.7 GHz,适用于 L 波段应用,包括那些需要高调制带宽的应用。CRR 前端采用单电源,并与 BB 电路共享低噪声跨导放大器 (LNTA) 的偏置电流,以降低功耗。为了最大限度地减少下变频之前射频 (RF) 信号的损失,高阻抗 AI 电路将混频器输入与 CRR 输出节点隔离。1/f NC 电路可抑制泄漏到输出的 LNTA 低频噪声。带有 gm 增强的共栅极 LNTA 以及单端到差分 LC 平衡-不平衡转换器用于增强输入匹配、变频增益和噪声系数 (NF)。所提出的接收器采用 TSMC 130 nm CMOS 工艺制造,占用有效面积为 0.54mm 2 。输入匹配 (S 11 ) 在 1 GHz 至 1 . 7 GHz 范围内低于 − 10 dB。在本振 (LO) 频率为 1 . 3 GHz、中频 (IF) 为 10 MHz 和默认电流设置下,CRR 实现了 41 . 5 dB 的转换增益、6 . 5 dB 的双边带 (DSB) NF 和 − 28.2 dBm 的 IIP3,同时消耗 1.66 mA 电流,电源电压为 1 . 2 V。
摘要 — 本文介绍了一种可扩展 W 波段相控阵系统的设计和实现,该系统具有内置自对准和自测试功能,基于采用 TowerJazz 0.18 µ m SiGe BiCMOS 技术制造的 RFIC 收发器芯片组,其 f T / f MAX 为 240/270 GHz。该 RFIC 集成了 24 个移相器元件(16TX/8RX 或 8TX/16RX)以及直接上变频器和下变频器、带素数比倍频器的锁相环、模拟基带、波束查找存储器和用于性能监控的诊断电路。设计了两个带有集成天线子阵列的有机印刷电路板 (PCB) 插入器,并将其与 RFIC 芯片组共同组装,以产生可扩展的相控阵瓦片。瓦片通过菊花链式本振 (LO) 同步信号彼此相位对齐。本文介绍了 LO 错位对波束方向图的影响的统计分析。16 个瓦片组合到载体 PCB 上,形成一个 384 元件 (256TX/128RX) 相控阵系统。在 256 个发射元件的视轴处测量到的最大饱和有效全向辐射功率 (EIRP) 为 60 dBm (1 kW)。在 90.7 GHz 下运行的无线链路使用 16-QAM 星座,在降低的 EIRP 为 52 dBm 的情况下,产生的数据速率超过 10 Gb/s,等效链路距离超过 250 m。
最近,人们越来越热衷于将一切无线化。与对海量数据的需求激增的高性能蜂窝通信相比,这些小型无线传感器和执行器节点需要低功耗、低成本和高系统集成度。典型的 CMOS 片上系统需要许多片外组件才能正常运行,即充当精确频率参考的晶体振荡器和天线。本论文的主要目标是解决在没有这些组件的情况下以尽可能低的功率水平运行所面临的障碍。这是朝着无线通信无处不在迈出的一步。在这项工作中,对收发器性能的评估是从功率、性能和物理尺寸的角度进行的。演示了不使用片外频率参考的情况下兼容低功耗标准的 2.4 GHz 发射器 (TX) 的运行。这些 2.4 GHz 收发器 (TRX) 称为单芯片微尘,在低功率水平下运行,无需片外频率参考。第一个单芯片节点展示了在温度变化导致本地振荡器漂移的情况下的 RF 芯片间通信。它使用自由运行的 LC 谐振振荡器,该振荡器通过周期性网络流量校准以防漂移。下一个单芯片节点是 2.4 GHz、802.15.4 TRX、BLE 广告 TX 片上系统,带有集成数字基带和 Cortex M0。同样,该芯片不使用片外频率参考。最后,介绍了一种带有集成天线的高频收发器设计,为完全片上解决方案铺平了道路。
如今,矢量信号分析仪 (VSA) 用于在研究、制造和原型设计中测量数字信号的特性。现代 VSA 通常使用 > 20 GHz 的载波频率和高达 200 MHz 的解调带宽。随着新通信设备的出现,带宽预计将大幅增长,例如参见 [1]。VSA 使用各种架构,而通常输入信号在使用至少 12 位 A/D 转换器进行多次下变频后在基带中采样,信号的同相和正交分量由正交解调确定。解调器的标量(幅度)响应可以使用校准的功率计通过计量可追溯性确定,但由于 VSA 的原理,没有关于相位的信息。可追溯性是 ISO/IEC 17025 对校准实验室和仪器制造商的一项关键要求。在 [2] 中,概述了使用快速数字采样示波器 (DSO) 进行可追溯的幅度和相位特性测量的策略。VSA 和 DSO 都使用了宽带多正弦激励,而测量信号对两种仪器来说是共同的,可以通过反卷积去除。选择多正弦波形是因为相邻音调之间的幅度和相位关系是可计算的。DSO 可通过电光采样 (EOS) 进行追溯,它定义了仪器响应中频率分量的相对时间 [3]。NIST(美国)[4]、NPL(英国)[5] 和 PTB(德国)[6] 已经开发了这样的 EOS 系统。VSA 的详细内部架构只有其制造商知道,目前计量实验室面临着这些仪器可追溯校准的问题。然而,使用 DSO [2] 的方法相对复杂,不适合商业校准实验室的常规测量。本文提出了一种可追溯的方法
PAN2416AV 是一款基于 OTP 的 12 位 AD 型 2.4GHz 收发器 SOC。它设计用于工作在 2.400~2.483GHz 全球 ISM 频段,集成射频(RF)发射器和接收器、频率合成器、晶体振荡器、基带 GFSK 调制解调器、低功耗 MCU 等,支持一对多网络和带 ACK 的通信。TX 功率、频道和数据速率可通过 SPI 设置。用户通过 MCU 的 I/O 端口向芯片发出指令,芯片自动进行收发配置进行通信,并根据应答信息自动判断数据发送/接收是否成功、重新发送、数据包丢失、继续发送和等待等操作。TX 功率、频道和数据速率可设置。PAN2416AV 需要的外围器件很少,支持单层/双层印刷电路板方案。主要特点 1、低功耗 输出功率 2dBm 时 19mA TX ; 空中速率 2Mbps 时 15mA RX ; 掉电时 2uA。 2、低成本 BOM 外部元件少,5 个电容、1 个晶振 支持双层或单层 PCB 设计,可使用印刷电路板微带天线或导线天线。 通过配置芯片内部部分链路层的通信协议的少量参数寄存器即可简单易用。 3、高性能 -91/-87/-83dBm@250K/1M/2M bps;可编程输出功率最高达 8dBm;接收机选择性更好,邻频抑制度高。 4、集成 MCU 模块 OTP : 4K×16Bit ; RAM : 176×8Bit ;MCU 内嵌看门狗定时器、LVR 模块、ADC、PWM 等。
关于导师:Qadeer Khan 教授是印度理工学院马德拉斯分校电气工程系集成电路与系统组的助理教授。他于 1999 年获得印度新德里贾米亚米利亚伊斯兰大学电子与通信工程学士学位,并于 2012 年获得美国俄勒冈州立大学电气与计算机工程博士学位。他的博士工作重点是开发高性能开关直流-直流转换器的新型控制技术。2012 年至 2015 年,他担任高通公司圣地亚哥分公司的电源管理系统主管工程师,2015 年至 2016 年在班加罗尔高通公司工作,参与定义骁龙芯片组各种电源管理模块的系统和架构,以满足不同的智能手机市场需求。 1999 年至 2005 年,他曾就职于摩托罗拉和印度飞思卡尔半导体公司,主要负责设计用于基带和网络处理器的混合信号电路以及用于高压电机驱动器的全芯片集成解决方案。Qadeer Khan 博士拥有 18 项美国专利,并在模拟、混合信号和电源管理 IC 领域撰写/合作撰写了 20 多篇 IEEE 出版物。他担任 IEEE 固态电路杂志、IEEE 超大规模集成系统交易、IEEE 电力电子交易和 IEEE 电力电子快报的审稿人。他的研究兴趣涉及高性能线性稳压器、LDO、开关直流-直流转换器和用于便携式电子产品和能量收集的电源管理 IC