牙本质生成始于成牙本质细胞,成牙本质细胞合成并分泌非胶原蛋白 (NCP) 和胶原蛋白。当牙本质受伤时,牙髓祖细胞/间充质干细胞 (MSC) 可以迁移到受伤区域,分化为成牙本质细胞并促进反应性牙本质的形成。牙髓祖细胞/MSC 分化在给定的生态位中受到控制。在牙齿 NCP 中,牙本质唾液酸磷蛋白 (DSPP) 是小整合素结合配体 N 连接糖蛋白 (SIBLING) 家族的成员,该家族的成员具有共同的生化特征,例如 Arg-Gly-Asp (RGD) 基序。DSPP 表达具有细胞和组织特异性,在成牙本质细胞和牙本质中高度常见。DSPP 突变会导致遗传性牙本质疾病。 DSPP 在蛋白水解作用下被催化成牙本质糖蛋白 (DGP)/唾液酸蛋白 (DSP) 和磷蛋白 (DPP)。DSP 进一步加工成活性分子。DPP 包含 RGD 基序和丰富的 Ser-Asp/Asp-Ser 重复区。DPP-RGD 基序与整合素 αVβ3 结合,并通过丝裂原活化蛋白激酶 (MAPK) 和粘着斑激酶 (FAK)-ERK 通路激活细胞内信号传导。与其他 SIBLING 蛋白不同,DPP 在某些物种中缺乏 RGD 基序。然而,DPP Ser-Asp/Asp-Ser 重复区与磷酸钙沉积物结合,并通过钙调蛋白依赖性蛋白激酶 II (CaMKII) 级联促进羟基磷灰石晶体生长和矿化。DSP 缺乏 RGD 位点,但含有信号肽。信号域的三肽与内质网内的货物受体相互作用,促进 DSPP 从内质网运输到细胞外基质。此外,DSP 的中间和 COOH 末端区域与细胞膜受体、整合素 β6 和闭合蛋白结合,诱导细胞分化。本综述可能揭示 DSPP 在牙发生过程中的作用。
2。在有指导RNA的情况下与靶DNA结合,只要目标是原始的邻接基序的上游(5'),GRNA和cas9核酸内切酶都会形成Cas9:GRNA复合物。cas9核酸内切酶与靶基因组基因核基因座结合均由导向RNA中包含的靶序列介导,又介导了一个3碱基对序列,称为原始序列相邻基序或PAM。为了通过CAS9切割DsDNA,它必须立即包含由导向RNA靶向的位点下游(3')的PAM序列。在没有引导RNA或PAM序列的情况下,CAS9既不会结合也不会切割目标。Cas9同源物(请参见下表)具有不同的PAM要求。这些不同的PAM要求使研究人员能够针对许多不同的基因组基因座。
饮食蛋白缺乏症是全球最严重的健康问题之一;优化植物性食品蛋白质生产率的能力对世界健康和可持续性产生了极大的影响。作物工厂必须整合来自环境的信号,并优先考虑在整个生长季节中可能单独/同时发生的压力的反应。压力反应会对植物的生长和质量特征(例如蛋白质和淀粉)产生不利影响。植物疾病每年造成主要损失作物的产量。拟南芥种类的拟南芥物种在拟南芥中与核因子y亚基C4(NF-YC4)结合拟南芥及其在作物中的同源物。 QQS或NF-YC4的过表达以碳水化合物为代价增加叶子和种子的蛋白质含量。过表达QQS或NF-YC4的突变体也显着提高了对植物病原体和害虫的耐药性。我们检测到了几个被预测的保守基序,该基序被稻米和大豆NF-YC4基因的启动子中的阻遏物约束。使用CRISPR/CAS9编辑大米和大豆NF-YC4基因的启动子,我们删除了具有阻遏物结合基序的启动子片段。这些缺失导致抑制剂结合减少,NF-YC4表达增加,蛋白质增加和碳水化合物降低。基因编辑的植物表现出高达48%的叶蛋白和15%的种子蛋白。此外,我们说明了通过靶向基因组缺失上调基因表达的一般方法。
诸如顺铂(顺铂)的设计需要详细了解铂和其他金属离子如何与核酸和核酸加工相互作用。此外,我们发现金属络合物在开发核酸的光谱和反应性探针方面具有独特的用处,因此在开发新的诊断剂中可能变得有价值。自然本身利用了金属/核酸化学,从天然产物的生物合成(例如博霉素)的生物合成,这些天然产物的生物合成将螯合氧化还原活性金属离子靶向和损害外源性DNA,到为真核调节性蛋白的基本结构基序的发展,这些基本结构基序(固定蛋白),锌指蛋白,锌字指蛋白,与DNA结合并调节转换。在所有这些努力中,我们首先需要对过渡金属离子和复合物如何与核酸相互作用以及如何最好地利用这种化学作用有所了解。
图2核糖开关机制,功能和保护。(a)核糖开关是高度结构化的RNA基序,这些RNA基序嵌入了许多细菌mRNA的5'非翻译区域中,在那里它们可以在共同转文时增强或抑制基因表达,以结合小分子或元素离子离子配体。这样的机制涉及RNA聚合酶(RNAP)对转录产量的调节,而其他机制则更直接地改变了mRNA转化为蛋白质的可能性。(b)上游适体区域结合配体,渲染形成结合口袋(黄色框)的核心段以及侧翼建筑片段(蓝色框),高度保守。[112,113]相比,下游表达平台显示出较少的保护,最可能是因为它在功能上与许多对特定细菌具有特殊性的蛋白质效应子相互作用。使用biorender.com创建。
不清楚。另一种策略是探索小鼠脑和人脑之间的相似性(Szegedi等,2020)。在单个神经元类型及其连接水平上,大脑由重复的构件组成,称为电路基序,这些基序包含互连兴奋性和抑制性神经元的组合。在自闭症和癫痫的小鼠模型中进行了许多研究,发现这些疾病与大脑的激发和抑制之间缺乏平衡有关(Nelson和Valakh,2015年)。在小鼠中已经对抑制性神经元的两种关键类型进行了很好的研究:白蛋白(PVALB)细胞,它们会迅速相关地靶向神经元,而生长抑制素(SST)细胞,这些细胞需要更长的时间(图1B; Blackman等,2013)。再说一次,这只是在小鼠中,还是在人类中也发现了具有PVALB或SST细胞的基序?现在,在Elife,Mean-Hwan Kim及其同事(总部位于艾伦脑科学研究所,华盛顿大学和瑞典神经科学研究所),报告说,人类和小鼠的抑制性电路主题非常相似(Kim等,2023)。建立了他们使用高通量转录组分析的最新工作(Bakken等,2021),研究人员比较了小鼠和人类皮质的细胞转录组。这揭示了超过70个基因,这些基因富含PVALB和SST细胞。这些基因中的许多基因与神经元之间的连接有关,这表明它们确定了这两种细胞类型的突触的特性。看到的类似细胞类型特异性遗传学
1. 纽约基因组中心,纽约,纽约州,美国 2. 纽约大学生物学系,纽约,纽约州,美国 3. 这些作者贡献相同 * 电子邮件:neville@sanjanalab.org 关键词:Cas9、诱变、汇集 CRISPR 筛选、CRISPRa、CRISPRi、原间隔区相邻基序
它们的活性如何结合起来控制 RNA 表达仍不清楚。在这里,我们设计了一种高通量报告基因检测方法,称为 ExP STARR-seq(增强子 x 启动子自转录活性调控区测序),并用它来检查人类 K562 细胞中 1,000 个增强子和 1,000 个启动子序列的组合兼容性。我们确定了增强子-启动子兼容性的简单规则:大多数增强子以相似的量激活所有启动子,并且内在增强子和启动子活性相乘地结合起来决定 RNA 输出(R 2 =0.82)。此外,两类增强子和启动子显示出微妙的优先效应。管家基因的启动子含有内置的激活基序,例如 GABPA 和 YY1 等因子,这降低了启动子对远端增强子的反应性。可变表达基因的启动子缺乏这些基序,对增强子表现出更强的反应性。总之,对增强子-启动子兼容性的系统评估表明,通过增强子和启动子类别调整的乘法模型可以控制人类基因组中的基因转录。
了解蛋白质表达动力学对于对细胞分化的机械理解至关重要。我们研究了NGN3的动力学,NGN3的动力学是胰腺内分泌发育至关重要的转录因子,包括其功能和解码机制。敲击内源性报告基因表明,Ngn3蛋白的表达在人IPS衍生的内分泌祖细胞中具有13小时的周期性振荡,并且随着细胞与β样细胞和α样细胞的分化而被关闭。增加NGN3蛋白的稳定性会导致一个宽的表达峰,而不是振荡,而较大的峰到槽变化。这导致早熟的内分泌与β样细胞和α样细胞以及关键NGN3靶基因的早熟表达。对动力学,数学建模和生物信息学的单细胞分析表明,NGN3振荡的解码是通过折叠式检测通过不一致的前馈基序进行的,该基序解释了正常和早熟的分化。我们的发现表明振荡性NGN3动力学控制分化的时机,但不能控制命运规范。
一系列超分子聚氨酯(SPU)的设计并与协同的多功能氢键脂肪胺酰胺末端胶囊合成并合成。聚合物中的尿电烷,尿素和酰胺基序之间的氢键在固态的聚合物链之间具有强大的动态关联。聚氨酯的极性和极性成分的相分离也有助于增强其热和机械性能。与其他材料相比,具有双胺末端盖的超分子聚氨酯通过多种氢键通过多种氢键伴侣伴侣,并且表现出增强的拉伸和热性能。可变温度的红外光谱(VT-IR)和原子力显微镜(AFM)进行研究以研究聚合物的相形态,并揭示了相位分离的增加与最终囊泡中酰胺基序的引入之间存在相关性。这些SPU还具有出色的愈合能力,需要温度> 200℃才能恢复其物理特性。