警报避免在早产新生儿中,直到因担心肾脏发育,高钾血症和急性肾脏损伤而导致的高血压治疗年龄。(1)。可能导致BP迅速下降。(1-3)高血压的充血性心力衰竭治疗:钙通道阻滞剂(例如氨氯地平)或外周血管扩张剂(氢嗪)是更好的替代方法。先天性肾病综合征 - 减少蛋白尿。(4-6)作用血管紧张素转化酶抑制剂(ACEI)。心力衰竭:周围血管扩张器 - 减少后负荷(血压(BP)和全身性血管抗性)和预紧力(右心房压力和左心室填充压力),并增加心输出量。高血压:几种作用机理:(1)抑制血管紧张素II的形成,(2)降低了缓激肽降解,(3)抑制了脱甲肾上腺素从交感神经末端释放。所有这些作用都会产生明显的血管松弛,减少后负载和心脏输出的改善。蛋白尿:抗蛋白尿作用的机制尚未清楚地理解。已经提出了肾小球基底膜的全身性和倾斜度压力的降低以及提高的尺寸选择性。(7)蛋白尿还原性也可能通过剂量依赖性血流动力学对传出动脉的作用而发生,这可能导致肾小球滤过率(GFR)的降低。(8)药物类型商品名Capoten,Captopril(Syrimed)呈现Capoten -5mg/ml口服溶液。卡托普利(Syrimed) - 25mg/5ml无糖的口服溶液。剂量高血压
在1927年,南非医师亚瑟·塞西尔·阿尔波特(Arthur Cecil Alport)描述了一个遗传性肾脏疾病的英国家庭,比女性更严重地影响男性,有时与听力损失有关。在1961年,采用了同名名称Alport综合征。在20世纪后期发现了负责该疾病的三个基因:分别针对IV型胶原蛋白的α3,α4,α4,α4,α4,α5多肽链编码的COL4A3,COL4A4和COL4A5。这些链组装成在肾小球基底膜中形成IV型胶原蛋白的异三聚体。科学家,临床医生,患者代表及其家人以及制药公司参加了2019年10月22日至26日在意大利锡耶纳举行的2019年国际Alport综合症研讨会,以及2021年11月30日至12月30日的在线研讨会。主要主题包括:重新命名,承认需要确定能够反映相当大的临床变异性的适当术语;提高分子诊断率的策略;从单基因到二元形式的基因型 - 表型相关性;新的治疗剂和新的治疗方法;和基因疗法使用基因编辑。在锡耶纳神奇的中世纪环境中建立的特殊协作气候继续在2021年的在线研讨会上。的条件,目的是确定治愈ALPORT综合征的治疗方法。
Deepa Galaiya,医学博士(耳鼻喉科助理教授 - 头颈手术)Deepa Galaiya是一名受过奖学金培训的神经科医生和外侧颅底外科医生。她的临床实践专门研究儿童和成人中中耳,内耳,颅底和面部神经障碍的手术和医疗。这包括治疗颅底肿瘤,前庭schwannomas(或声学神经瘤),人工耳蜗,慢性耳部疾病,听力丧失,胆固醇,耳塞,耳脊髓病,脑脊液漏气泄漏和耳痛。她接受了内窥镜耳部手术的训练,这是一种最少的侵入性方法来治疗胆汁脱蛋白瘤和耳膜穿孔,以减少对可见切口的需求。她将为巴尔的摩和华盛顿特区都会区的患者居民提供服务。Galaiya博士的研究兴趣包括开发用于评估电极插入,尖端折叠和基底膜破裂的人耳塞植入的力感应微量毛。她的其他项目涉及用于手术导航的计算机视觉,用于机器人颞骨手术的工具到组织的注册,手术人体工程学的优化以及与合作控制机器人组合的中耳假体放置力的力量评估。财务披露-Deepa Galaiya受约翰·霍普金斯(John Hopkins)非财务披露雇用-Deepa Galaiya没有非财务披露
摘要:连接性大疱性表皮松解症 (JEB) 是一种严重的起泡性皮肤病,由编码皮肤完整性所必需的结构蛋白的基因突变引起。在本研究中,我们开发了一种适用于研究 JEB 相关 COL17A1 基因表达的细胞系,该基因编码 XVII 型胶原蛋白 (C17),C17 是一种跨膜蛋白,参与连接基底角质形成细胞和皮肤下层真皮。利用化脓性链球菌的 CRISPR/Cas9 系统,我们将 GFP 的编码序列与 COL17A1 融合,导致 GFP-C17 融合蛋白在人类野生型和 JEB 角质形成细胞中在内源性启动子的控制下组成性表达。我们通过荧光显微镜和蛋白质印迹分析证实了 GFP-C17 的准确全长表达和定位到质膜。正如预期的那样,GFP-C17 mut 融合蛋白在 JEB 角质形成细胞中的表达未产生特定的 GFP 信号。然而,在表达 GFP-COL17A1 mut 的 JEB 细胞中,CRISPR/Cas9 介导的 JEB 相关移码突变修复导致 GFP-C17 恢复,这在融合蛋白的全长表达、其在角质形成细胞单层质膜内以及 3D 皮肤等效物的基底膜区内的准确定位中显而易见。因此,这种基于荧光的 JEB 细胞系有可能作为筛选个性化基因编辑分子和体外应用以及在适当的动物模型中体内应用的平台。
连接表皮溶解Bullosa(JEB)是一种令人衰弱的遗传性皮肤疾病,由编码Lam-Inin-332,XVII型胶原蛋白(C17)的基因突变引起,并综合素6 B 4,维持模糊和表皮之间的稳定性。我们签署了患者特异性的cas9-核酸酶和基于 - 基因酶的靶向策略,用于在Col17a1的外显子52中重新构建与缺乏全长C17表达相关的共同纯合子deportion。随后对蛋白质的重新修复,糖节组成以及治疗后的DNA和mRNA结局的发散表明,基于成对的基于成对的COL17A1编辑的吉利效率,安全性,安全性和精度。几乎46%的原发性jeb角细胞表达了C17。重新构架Col17a1 tran-文字主要具有25和37-nt的缺失,占所有编辑的> 42%,编码C17蛋白质变体,可准确地定位于细胞膜。此外,与未处理的JEB细胞相比,经过校正的细胞显示出精确的细胞外120 kDa C17结构域的精确脱落,并提高了对层粘连蛋白332的粘附能力。三维(3D)皮肤等效物在表皮和真皮之间的基底膜区域内表现出C17的认可和连续沉积。我们的发现构成了第一次基于基因编辑的Col17a1突变的校正,并证明了基于Cas9 D10A Nickase比野生型CAS9 Cas9基于野生型Cas9策略在临床环境中基于基因重塑的Prox-Imal配对迹象策略的优越性。
隐性营养不良型大疱性表皮松解症是一种破坏性的皮肤脆弱性疾病,其特征是皮肤反复起水疱、瘢痕,并且有较高的罹患鳞状细胞癌的风险,该病是由 COL7A1 基因突变引起的,COL7A1 基因编码 VII 型胶原蛋白,而 VII 型胶原蛋白是连接真皮和表皮的锚定纤维的主要成分。以前已经通过基因编辑在患者细胞中体外校正 COL7A1。然而,要想直接治疗这种疾病特有的水疱性病变,就必须采用体内编辑方法。我们现在已经生成了用于 CRISPR-Cas9 递送的腺病毒载体,以去除 COL7A1 的第 80 外显子,该外显子包含西班牙患者中非常普遍的移码突变。为了进行体内测试,使用了人源化皮肤小鼠模型。在用外科打孔器在再生患者皮肤移植上产生的切除伤口中填充嵌入纤维凝胶中的腺病毒载体后,观察到皮肤的有效病毒转导。用载体治疗的伤口区域基底膜区 VII 型胶原沉积与真皮-表皮粘连的恢复相关,表明隐性营养不良性大疱性表皮松解症 (RDEB) 患者的皮肤病变可以通过体内 CRISPR-Cas9 递送直接治疗。
图 1 EMT 过程中的细胞事件。正常情况下,上皮细胞以单细胞层或多层形式存在,并通过特殊的细胞间连接相互通讯,包括桥粒、亚顶端紧密连接、黏附连接和分散的间隙连接。一旦上皮细胞受损,上皮细胞 - 细胞连接就会溶解,上皮细胞失去顶端 - 基底极性并获得前后极性。此外,细胞骨架结构会重组,E-钙粘蛋白的表达被 N-钙粘蛋白的表达取代,这有助于细胞运动和侵袭性。然后,基底膜会溶解。在胚胎发生过程中,上皮和间充质细胞通过 EMT 和 MET 相互转化,这种转化被称为 I 型 EMT,对胚胎发育和器官形成至关重要。在 II 型 EMT 中,间充质样细胞随后转化为肌成纤维细胞,产生过量胶原蛋白,导致纤维化。在 III 型 EMT 中,间充质样细胞随循环系统迁移到次要位置,迁移细胞通过 MET 形成继发性肿瘤。绿色方格表示三种 EMT 类型中的共同过程,可以针对该过程治疗纤维化和肿瘤。EMT,上皮间充质转化;MET,间充质上皮转化 [彩色图可在 wileyonlinelibrary.com 上查看]
肾小球效能屏障,包括毛细管毛细管的内皮细胞的内层,最外面的足细胞和它们之间的肾小球基底膜,在肾脏功能中起着关键作用。足细胞,终末分化的上皮细胞,一旦受伤,再生才能重生。它们对于维持肾小球施加屏障的完整性至关重要。对足细胞的损害是由固有或外在因素引起的,导致早期蛋白尿,并最终发展为慢性肾脏病(CKD)。免疫介导的足细胞损伤是蛋白尿性肾小球疾病的主要致病机制,包括最小变化,局灶性节段性肾小球硬化,膜性肾病和狼疮性肾炎,伴有Podococyte参与。广泛的证据表明,足细胞不仅有助于维持肾小球效果屏障,并充当免疫反应的靶标,而且还表现出了类似免疫细胞的特征,也参与了先天和适应性免疫。他们在介导肾小球损伤中起关键作用,并代表CKD的潜在治疗靶标。本综述旨在系统地阐明各种足细胞病变中足细胞免疫损伤的机制,并概述了足细胞免疫疗法的最新进展。它提供了有价值的见解,可以更深入地了解足细胞在蛋白尿肾小球疾病中的作用,并鉴定出新的治疗靶标,并对未来的临床诊断和治疗podococysed疾病的治疗具有显着意义。
在没有全身性钙和磷酸盐失衡的情况下,基底神经节中脑微血管的抽象钙化是原发性家族性脑钙化(PFBC)的标志,这是一种罕见的神经退行性疾病。在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。 XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。 在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。 血管钙化被血管基底膜包围,位于平滑肌层的小动脉。 与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。 但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。 除了血管钙化外,我们还观察到血管在钠依赖性磷酸磷酸转运蛋白2(SLC20A2),异形和多层逆转录病毒受体1(XPR1),血小板衍生的生长因子B(PDGFB),血小板生长因子受体β(PDGFRB),脑质量发生的gylasise(PDGFB)的基因(pDGFB),脑料beta和脑电图调节(XPR1)的反应(PDGFB)调节gycose(pDGFB),已知分子2(JAM2)引起PFBC。XPR1的功能丧失突变是Meta-Zoans中唯一已知的无机磷酸盐出口剂,引起了主要遗传的PFBC,但在2015年首次报道,但到目前为止,在大脑中,尚无研究的研究是否尚未解决一种功能等位基因的损失,是否导致一种常用的生物体(一种对人类疾病模拟人类疾病的常用生物体)的病理学改变。在这里我们表明,用于XPR1的小鼠(XPR1 WT/LACZ)的杂合子存在脑脊液中的无机磷酸盐水平,以及丘脑中血管钙化的年龄和性别依赖性生长。血管钙化被血管基底膜包围,位于平滑肌层的小动脉。与先前特征的PFBC小鼠模型相似,XPR1 WT/LACZ小鼠中的血管钙化含有骨基质蛋白,并被反应性星形胶质细胞和小胶质细胞包围。但是,小胶质细胞激活不仅限于钙化血管,而是显示出广泛的存在。除了血管钙化外,我们还观察到血管
警报避免在早产新生儿中,直到因担心肾脏发育,高钾血症和急性肾脏损伤而导致的高血压治疗年龄。(1)。可能导致BP迅速下降。(1-3)高血压的充血性心力衰竭治疗:钙通道阻滞剂(例如氨氯地平)或外周血管扩张剂(氢嗪)是更好的替代方法。先天性肾病综合征 - 减少蛋白尿。(4-6)作用血管紧张素转化酶抑制剂(ACEI)。心力衰竭:周围血管扩张器 - 减少后负荷(血压(BP)和全身性血管抗性)和预紧力(右心房压力和左心室填充压力),并增加心输出量。高血压:几种作用机理:(1)抑制血管紧张素II的形成,(2)降低了缓激肽降解,(3)抑制了脱甲肾上腺素从交感神经末端释放。所有这些作用都会产生明显的血管松弛,减少后负载和心脏输出的改善。蛋白尿:抗蛋白尿作用的机制尚未清楚地理解。已经提出了肾小球基底膜的全身性和倾斜度压力的降低以及提高的尺寸选择性。(7)蛋白尿还原性也可能通过剂量依赖性血流动力学对传出动脉的作用而发生,这可能导致肾小球滤过率(GFR)的降低。(8)药物类型血管紧张素转化酶抑制剂(ACEI)。商品名Capoten,卡托普利(Syrimed)演示文稿Capoten -5mg/ml口服解决方案 - 停产。剂量高血压卡托普利(Syrimed) - 25mg/5ml无糖的口服溶液。