• 将德克萨斯州法律 1 更改为 TXCALL1D,将德克萨斯州法律 2 更改为 TXCALL2D • 在 SIEC 参考资料中添加“德克萨斯州 SWIC 办公室”或“TxICC” • 删除了对 2015 年之前 P25 合规性的参考资料 • 添加了对 P25 令人信服的理由例外的参考资料 • 澄清了调制和加密的宽带和窄带 • 添加了关于如何在紧急情况下访问其他 VHF 中继器信道的脚注 • 更新表格以确保标题始终一致 • 在表 2 和表 5 中为中继器基座配置创建了分隔线 • 将表 3 分成两个表,将战术中继器配置更改为表 4 • 为边境地区重新划分边境通信频段创建了新的表 6 • 将 800 NPSPAC 互操作性信道的发射指示器更改为 20K0F3E • 更新了 MOU 语言以澄清 VFD 签名
拟建的塔将建在约 24 英尺 x 24 英尺的塔基上,包括一个 40 英尺长 x 10 英尺宽 x 10 英尺高的掩体和一个 4,000 加仑的外部柴油油箱,安装在 50 英尺 x 30 英尺的掩体/油箱基座上。掩体将容纳一台 48 千瓦的 Tier IV 柴油备用发电机、GEP 调制解调器和网络硬件、配电板、安全和安全传感器以及设备的供暖、通风和空调/环境控制单元。塔将配备上下工作平台、船梯、入侵检测和攀爬威慑系统以及防雷装置。楼梯上方将安装攀爬威慑装置和带锁的大门,以阻止未经授权的进入。拟建的油箱周围将放置护柱。
摘要:目前,在特定而复杂的工业操作中,机器人必须满足某些要求和标准,如高运动学或动态性能、工作空间的特定尺寸或机器人移动元件尺寸的限制。为了满足这些标准,必须对机器人进行适当的设计,这需要多年的实践以及人类设计师的适当知识和经验。为了协助人类设计师进行机器人设计,已经开发了几种方法(包括优化方法)。本文解决的科学问题是开发一种人工智能方法,使用前馈神经网络来估计机器人的工作空间大小和运动学。该方法应用于由基座平台、移动平台和六个运动旋转万向球面开环组成的并联机器人。数值结果表明,通过适当的训练和拓扑结构,前馈神经网络能够根据末端执行器的姿态正确估计工作空间体积值和广义坐标值。
3 月 18 日,瓦萨奇山前发生的 5.7 级地震并不是犹他州人想象中的“大地震”,但其强度足以促使人们评估其对人们工作、聚会和娱乐的众多建筑的影响。幸运的是,犹他州一些最古老、最受尊敬的建筑瑰宝在严格的抗震标准成为普遍做法之前就已建成,它们在这次试运行地震中表现出色,这要归功于近几十年的远见和规划,这些远见导致了全面的基础隔震改造,从而保持了它们的稳定性。地震后对犹他州议会大厦和盐湖城及县政府大楼的检查表明,它们的基座隔震器(分别于 2008 年和 1989 年完工)发挥了作用。由于犹他州的规划,这些标志性建筑都表现得非常好。Paul 说,对现有建筑进行基础隔离存在很大的后勤和成本障碍
本研究的目的是证明使用两个 NeuroPort 阵列(电极)长期记录大脑活动(神经信号)的安全性和有效性。本研究涉及两次手术,间隔约一年,分别植入和移除 NeuroPort 阵列。两次手术均在全身麻醉下进行。两个微电极阵列将被植入控制您运动的大脑区域。这些阵列非常小(4 毫米 x 4 毫米,比铅笔橡皮擦还小),由 100 个记录大脑活动的小电极组成(图 1)。阵列连接到固定在头骨上的连接器(称为基座)。通过此连接器,电极将大脑活动记录发送到计算机,计算机将使用这些信号来控制各种计算机显示器或外部设备。外部设备包括计算机或机器人设备等,它们可以帮助您执行日常活动。使用神经活动来控制外部设备称为脑机接口 (BMI) 技术。
船体和机械钢铸件 W8.1 范围 W8.1.1 这些要求适用于用于船体和机械应用的 C、C-Mn 和合金钢铸件,例如用于全球服务的船舶和海上设施的艉框架、舵框架、曲轴、涡轮机壳体、基座等。W8.1.2 这些规定在相关的 IACS 统一要求和/或船级社的要求中规定。本统一要求还考虑了仅适用于钢铸件的等级,其中设计和验收测试与环境温度下的机械性能有关。对于其他应用,额外用于焊接制造,以及不用于焊接的等级。1.2 可能需要额外的要求,特别是当铸件用于低温或高温时,例如用于具有冰级的船舶或锅炉。W8.1.3 另外,根据适用的服务温度和环境,通常需要对海上设施铸件提出额外要求。1.3 同样,符合国家标准的 C 和 C-Mn 钢铸件和合金钢铸件
电阻器按功能可分为固定电阻器和可变电阻器(可调电阻器)。电阻器结构一般有三种类型:合成电阻器、薄膜电阻器或线绕电阻器。它们基本上由安装在基座或基板上的电阻元件、环境保护涂层和外部电引线组成。合成电阻器由电阻材料和粘合剂的混合物制成,并模制成具有特定电阻值的预定形状。薄膜电阻器由沉积在绝缘圆筒或细丝内部或外部的薄电阻膜制成,在绝缘圆筒或细丝上刻有螺纹图案(有时称为螺旋切割或螺旋切割),以在陶瓷或玻璃基板的两端之间形成薄窄条或电阻材料轨道。线绕电阻器由缠绕在绝缘体上的电阻丝制成。这三种基本类型在固有可靠性、尺寸、成本、电阻范围、额定功率和一般特性方面有所不同。没有一种类型具有所有最佳特性。在选择它们时必须考虑许多因素。
基于冯·诺依曼架构和经典神经网络的现代人工智能 (AI) 系统与哺乳动物的大脑相比具有许多基本局限性。在本文中,我们将讨论这些局限性及其缓解方法。接下来,我们将概述目前可用的神经形态 AI 项目,这些项目通过将一些大脑特征引入计算系统的功能和组织来克服这些局限性(TrueNorth、Loihi、Tianjic、SpiNNaker、BrainScaleS、NeuronFlow、DYNAP、Akida、Mythic)。此外,我们还介绍了根据神经形态 AI 系统所使用的大脑特征对其进行分类的原则:联结主义、并行性、异步性、信息传输的脉冲性质、设备上学习、本地学习、稀疏性、模拟和内存计算。除了回顾基于现有硅微电子技术的神经形态设备所使用的新架构方法外,我们还讨论了使用新忆阻器元件基座的前景。我们还给出了在神经形态应用中使用忆阻器的最新进展示例。