溶液形成已被证明是增加陶瓷硬度的方法之一。5 先前的研究已经制备了许多 HEB 组合物,它们有可能比单个组分硼化物具有更高的硬度。8–10 例如,Gu 等人 11 研究了 (Hf 0.2 、Nb 0.2 、Ta 0.2 、Ti 0.2 、Zr 0.2 )B 2 作为典型的 HEB。在 2000 ◦C 下进行放电等离子烧结 (SPS) 后获得的维氏硬度 (VH) 为 22.44 GPa,载荷为 9.8 N。基于该研究,Feng 等人 4 制备了一系列名义上纯净的 HEB。基本成分为 (Hf 0.2 ,Zr 0.2 ,Ti 0.2 ,Ta 0.2 ,Nb 0.2 )B 2 ,其中 Nb 用 V、Cr 或 Mo 代替,Ta 和 Nb 用 Mo 和 W 代替。含有 Cr、Mo 或 Mo 和 W 组合的成分具有最高的 VH 值,在 0.49 N 负载下超过 40 GPa。同样,Quin 等人研究了具有非等摩尔浓度 Mo 和 W 的各种 HEB 成分。根据该研究,(Zr 0.225 ,Hf 0.225 ,Nb 0.225 ,Mo 0.225 ,W 0.1 )B 2 在 1.96 N 负载下具有 27.5 GPa 的 VH。12
光线通过瞳孔进入眼睛,并通过包括角膜和晶状体 152 在内的前眼结构聚焦到视网膜上(见图 2.1)。视网膜中的感光细胞记录图像的基本成分,并通过视神经和其他通路传递到皮质进行感知处理。152 虽然概念简单,但过程复杂,涉及多个结构,它们通过复杂的通路进行通信以创建精确协调的动作序列。这些通路将感光细胞与丘脑、脑干、皮质和小脑连接起来。聚焦的关键动作序列包括 1) 通过协调前眼结构和眼球运动将图像精确聚焦到视网膜感光细胞上 2) 确保感光细胞通过瞳孔充分充满光线 3) 通过眼球运动和调节保持在一定距离范围内的聚焦清晰度。然后,视觉输入通过视神经和其他通路传输到后皮质区域,将语言与图像联系起来,并将其储存在记忆中。137,152 这些结构或通路的任何损害都可能导致视力模糊。2.1.2 视力缺陷视力下降的原因有很多,包括先天性或后天性疾病;遗传或后天性眼部结构缺陷;早年或晚年发生的眼部疾病;因其他疾病、神经系统疾病以及眼部和脑部损伤而发生的疾病。32,
基因组编辑技术的发展彻底改变了生物医学研究,特别是自从 CRISPR/Cas9(成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9)技术引入以来。该系统最初是在细菌免疫反应中发现的 1,随后应用于真核生物基因组编辑 2 – 4。CRISPR/Cas9 系统的简单性使基因组编辑比传统的 DNA 编辑技术更容易获得和更容易。作为一种基因组编辑工具,该系统由两个基本成分组成:一种切割 DNA 链的内切酶 Cas9,以及一种单向导 RNA(sgRNA),其中包含用于识别目标 DNA 区域的特定序列。值得注意的是,细菌中的内源性 Cas9 系统有两种 RNA 成分(CRISPR RNA(crRNA)和反式激活 crRNA); CRISPR/Cas9 工具中的 sgRNA 是由 crRNA 和反式激活 crRNA 人工改造而成。当 Cas9 和 sgRNA 被递送到细胞中时,产生的 Cas9-sgRNA 复合物被导向目标基因组位点,在那里产生 DNA 中的双链断裂 (DSB)。然后通过内源性 DNA 修复机制修复 DSB,从而实现基因敲除或敲入 5 。
摘要:本文介绍了一种针对语音情感的新型基于图形的学习技术,该技术已专门针对人形机器人内的能源有效部署而定制。我们的方法论代表了可扩展图表示的融合,该图表源于图形信号处理理论的基础原理。通过研究循环或线图的利用,作为塑造强大的图形卷积网络(GCN)构造的基本成分,我们提出了一种方法,可以允许捕获语音信号之间的关系以解码复杂的情感模式和反应。我们的方法与诸如IEMOCAP和MSP -IMPROV之类的既定数据库进行了验证和基准测试。我们的模型优于稳定的GCN和普遍的深度图体系结构,证明了与ART方法论状态相符的性能水平。值得注意的是,我们的模型在显着减少了可学习参数的数量的同时,实现了这一壮举,从而提高了计算效率并加强其对资源约束环境的适用性。这种提出的基于图形的杂种学习方法用于人形机器人内的多模式情绪识别。其提供竞争性能的能力,同时简化计算复杂性和能源效率,这代表了一种新颖的情绪识别系统的新方法,可以满足各种真实世界的应用,其中人类机器人中情绪识别的精确性是一个关键的必要条件。
摘要:核桃(Juglans Regia L.)是一种单一的物种,尽管它表现出自我兼容,但它表现出不完全的花粉棚和女性接受性的重叠。因此,交叉授粉是最佳水果产生的先决条件。交叉授粉可以通过风,昆虫,人为或手工自然发生。花粉已被认为是黄虫植物植物植物PV的一种可能途径。Juglandis感染,一种导致核桃疫病疾病的致病细菌。除了众所周知的文化和化学控制实践外,使用无人机的人工授粉技术可能是果园中核桃疫病疾病管理的成功工具。无人机可以携带花粉并将其释放到农作物上或模仿蜜蜂和其他传粉媒介的作用。尽管这种新的授粉技术可以被视为一种有前途的工具,但花粉发芽和知识是传播细菌疾病的潜在途径,对于核桃树的开发和生产空中授粉机器人的开发和生产仍然是至关重要的信息。因此,我们的目的是描述具有基本成分的授粉模型,包括识别“核心”花粉微生物群,无人机将人工授粉作为一种成功管理核桃疫病疾病的成功工具,指定适当的花授粉算法,通过自动授粉的平均授粉机器人的平均粉丝和微小的粉料来设计算法。
纠缠现象是量子物理学的显着特征,在量子信息理论的许多领域中已被识别为关键成分,包括量子密钥分布[4],超密集编码[1]和传送[2]。然而,如何构建真正的多部分纠缠状态的一般问题仍未解决。在某种程度上取得了一些进展[5] - [7],[10],[20],但是手头的任务通常被认为是一个困难的任务。常常是这种情况[15],[17],组合学对于量子信息理论很有用,而正交阵列(OAS)是构建其他有用的组合对象的基本成分[9]。最近,已经提出了许多新的构建强度K的OA,尤其是混合正交阵列(MOAS),并且已经获得了许多新的OA类[3],[16],[18],[19],[19]。正是OAS中的这些新事态发展表明,在许多新的真实多部分纠缠的状态中构建的可能性。如果每次减少对K派对的每一次减少均最大混合,则据说由n> 2政党组成的异质多部分系统的高度纠缠量子状态被认为是均匀的[6]。这些状态与混合字母的量子误差校正代码密切相关。最近,作者在[8],[11],[12],[22]中引入了量子拉丁正方形,立方体,高管和量子正交阵列。他们还证明了
具有不寻常的电磁正确性的结构化材料在几种易流动作品1 - 4后引起了显着的关注,这表明,通过调整常规金属的微观结构和介电的微观结构,可以在此类媒体中从根本上改变光的传播。显着的效果,例如负折射,5,6个亚波长度成像,7,8披肩,9,10和通过无损的替代棱镜的调色板的反转,理论上预测了11个,在某些情况下进行了预测。某种程度上类似于常规的晶体材料,超材料通常由许多相同的夹杂物组成,这些夹杂物在常规晶格中排列。包含物的尺寸比辐射的波长小得多。在最简单的情况下,在最简单的情况下,仅使用少数有效的参数来实现电磁波传播的特征,可以通过使用均质化技术来简化这种复杂系统的研究,从而实现了电磁波传播的特征:有效的介电性和有效的渗透性。的确,超材料的一个重要特征是它们的磁反应可能非常强,尽管材料的基本成分通常是较大的或介电颗粒具有内在的磁性特性。1这种人工磁性是由夹杂物中引起的电流的沃克斯部分诱导的,在某些情况下,该部分可能非常接近对真正磁性粒子的反应。12
抽象的牙菌斑是一个薄而柔软的层,其中包含细菌聚集并粘在牙齿的表面上。此牙齿斑块是无色的,因此眼睛看不到。因此,要看到牙齿,需要一个斑块染色剂。mangosteen Peel含有牙菌斑染料,形式为花色蛋白,产生紫色的红色或蓝色。除此之外,花青素是一种可溶于水的活性物质,可以与斑块中的糖蛋白结合,从而可以与斑块形成键。这项研究的目的是确定花青素中的花青素含量以及由芒果果皮提取物制成的粘膜粘附凝胶配方,该凝胶提取物是最佳的,作为牙皮斑块着色剂。该研究方法是通过测试花色苷水平的实验实验室研究,使粘膜粘附性凝胶配方具有10%,25%,50%芒果果皮提取物的基本成分,然后通过有机摄影测试,味觉测试和粘附测试通过有机摄影测试和粘附测试来测试凝胶的质量。研究结果表明,粘附性凝胶配方中的芒果果皮提取物的浓度影响了凝胶制剂的质量,其中Mangosteen Peel提取物的浓度为10%,25%和50%,能够提高制剂的颜色强度,并提高凝胶制剂的粘附力,但可以降低凝胶的扩散能力。使用芒孔果皮提取物作为公开溶液的最佳浓度是25%的浓度,因为它具有良好的粘附力和散布功率和颜色强度,与牙齿形成对比。
摘要:新鲜水果和蔬菜是健康饮食的重要组成部分,但由于微生物污染而经常与食源性疾病有关。因此,本文的目的是隔离和鉴定与西红柿(豆lycopersicum),香蕉(Musaspp。),菠菜(Spinacia oleracea)和秋葵(Abelmoschus esculentus)通常在尼日利亚Kwarra State的旧市场上出售,使用标准微生物技术。新鲜农产品的细菌负荷范围为0.7 x -1.8 x,在变质农产品中的3.3 x -7.0 x范围内。在变质的农产品中,总细菌负荷较高,宠坏的香蕉记录7.0×10 cfu/ml,而新鲜的Okra的细菌载荷的最低细菌载荷为0.7×10×10 cfu/ml。形态学和生化分析确定了大肠杆菌,沙门氏菌属。,肺炎克雷伯氏菌,金黄色葡萄球菌,铜绿假单胞菌,枯草芽孢杆菌和肠杆菌的生气器。克雷伯氏菌肺炎是最普遍的物种,发生在66.67%的香蕉样品中,菠菜样品的33.33%和33.33%的番茄样品。这些发现突出了新鲜和变质农产品的严重微生物污染,强调了与食用原始或最少加工的水果和蔬菜相关的潜在健康风险。该研究强调了在处理,存储和销售期间改善卫生实践的需求,以及实施定期的微生物监测,以确保当地市场的食品安全。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。(2024)。J. Appl。doi:https://dx.doi.org/10.4314/jasem.v28i12.16许可证:CC-BY-4.0开放访问策略:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分发,reporstribute,repost,repost,repost,compost,compost,translate,translate和read。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Abdulrahaman,F。B;穆罕默德(J); Abdulkareem,T。Z。与西红柿,香蕉,菠菜和秋葵相关的致病细菌的隔离和鉴定,通常在尼日利亚夸拉州的旧市场出售。SCI。 环境。 管理。 28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。 他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。 全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ETSCI。环境。管理。28(12)4067-4071日期:收到:2024年10月22日;修订:2024年11月20日;接受:2024年12月8日;出版:2024年12月18日关键字:细菌分离株;水果;蔬菜;大肠杆菌;金黄色葡萄球菌水果和蔬菜是健康饮食的基本成分,提供了丰富的养分供应,例如纤维,维生素和维持整体健康至关重要的矿物质(Kaparapu等人,2020年)。他们的消费与许多健康益处有关,包括急性和慢性病的风险降低,例如心血管疾病,癌症和骨质疏松症(Hodder等,2020)。全球卫生组织强调了每日水果和蔬菜消费促进幸福感和预防疾病的重要性(Aune ET
人类生命的快速发展会影响不断增长的能源需求以及寻找可持续替代能源的创新需求。已经开发的创新之一是太阳能电池技术,可以将阳光转化为电能。然而,通常使用的透明底物或电极的高生产成本,例如FTO(氧化氟锡)和ITO(Indium Tin氧化物)是主要障碍。因此,本研究探讨了将图形氧化物用作太阳能电池制造中的替代半导体材料。玉米棒含有碳化合物,可以用作图形氧化物生物量的来源,用作纳米复合材料Fe 3 O 4-图形氧化物。这项研究的目的是确定组合物变化对使用悍马修饰方法从玉米棒的基本成分合成的纳米复合fe 3 O 4-纳米复合氧化物的光学特性的特性的影响。使用UV-VIS测量吸光度,透射率,反射率和间隙能量,成分变化为40%:60%,30%:70%和20%:80%的结果。在混合物中,获得的带的能量值随着磁铁矿(Fe₃o₄)的增加而降低,这表明纳米复合fe fe₃o ox -图形氧化物是半导体,值为3.39 eV(40%:60%),3.62 ev(3.62 ev(30%:70%:70%)和3.94 EV(3.94 EV(20%):80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%。关键字:玉米棒,纳米复合fe 3 o 4-氧化物图形,光学特性,紫外线 - vis,间隙能量