摘要 - 由于测量结果并不比其不确定度更好,因此指定不确定度是计量学的一个非常重要的部分。人们倾向于相信物理学中的基本常数随时间不变,并且它们是建立国际系统 (SI) 标准和计量学的基础。因此,在最先进的水平上明确指定这些物理不变量的不确定性应该是计量学的主要目标之一。但是,通过观察某些物理量的行为,我们可能会扰乱标准,从而引入不确定性。一系列观测中的随机偏差可能是由测量系统、环境耦合或标准中的固有偏差引起的。由于这些原因,并且由于相关随机噪声在自然界中与不相关随机噪声一样普遍存在,因此普遍使用经典方差和均值标准差可能会混淆而不是澄清有关不确定性的问题;即,这些测量仅适用于随机不相关偏差(白噪声),而白噪声通常是观察到的偏差频谱的子集。如果事实上该系列不是随机和不相关的,即没有白色频谱,那么由于测量是在不同时间进行的,因此系列中每个测量都是独立的假设应该受到质疑。在本文中,频率标准、标准电压电池和量块的研究提供了长期随机相关时间序列的例子,这些时间序列表明行为不是“白色”(不是随机和不相关的)。本文概述并说明了一种简单的时域统计方法,该方法为幂律谱提供了一种替代估计方法,可用于大多数重要的随机幂律过程。了解频谱可以在存在相关随机偏差的情况下提供更清晰的不确定性评估,所概述的统计方法还为白频谱提供了一个简单的测试,从而使计量学家能够知道使用经典方差是否合适或是否要结合更好的不确定性评估程序,例如,如本文所述。
测量良好实践指南编号41 CMM 测量策略 David Flack 工程测量部 国家物理实验室 摘要 本指南涵盖使用坐标测量机 (CMM) 时测量点数量的选择,并就精度和速度之间的折衷提供建议。它为标准特征的采样标准提供指导,并为涉及长距离特征投影的测量提供建议。它涵盖清洁度、零件装载/对准以及温度、表面光洁度和几何形状对结果的影响。它还包含有关基本测量原理、常见测量要求、与绘图要求相关的 CMM 软件功能以及使用带有 CAD 数据的 CMM 检查零件时的良好计量实践的信息。
对于高阿尔法研究飞行器飞行测试,HI-FADS 计算是在飞行后使用地面遥测的压力数据进行的。为了允许作为实际飞行系统的一部分进行自主操作,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统,即实时刷新空气数据传感 (RT-FADS) 系统,在 NASA Dryden F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。介绍了系统校准方法以及亚音速、大迎角和超音速飞行状态下系统性能的评估。
对于高阿尔法研究飞行器飞行试验,HI-FADS 计算是在飞行后使用遥测到地面的压力数据进行的。为了能够作为实际飞行系统的一部分自主运行,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统即实时刷新空气数据传感 (RT-FADS) 系统,在美国宇航局德莱顿 F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。本文介绍了系统校准方法以及亚音速、大攻角和超音速飞行状态下的系统性能评估。
当前一代NOAA极性卫星具有改进的AVHRR成像仪(以1.6微米为云,冰和雪地歧视的通道添加了通道),并将其声音器仪器继续提供基本测量。对微波炉发声仪器(例如高级微波炉发声单元(AMSU))的重要改进,以大约50 km的水平分辨率提供全天候温度的声音信息,并在水平分辨率约15 km的情况下提供水分响声信息。随着这种增强的微波音响器(更多的通道,更好的空间分辨率)的出现,全天候发声能力是在1998年建立的,并延续了高空间分辨率红外(良好的空间分辨率,逐渐发展为较高的光谱分辨率)。数据已成为国际天气服务运营实践的一部分。
在本次研讨会上,我们将研究量子测量理论。首先,我们将详细描述测量量子态的过程。然后,我们将介绍弱测量的概念,它提供的有关波的信息较少,但有其他好处。在弱测量领域,我们将观察到一些奇怪的结果。调整我们对测量理论的期望非常重要。即使我们将更详细地描述测量过程,而不仅仅是陈述投影假设,量子力学的基本测量问题仍然存在。在这个理论的范围内,我们无法解释测量的投影性质、玻恩规则或波函数坍缩。量子世界和我们的经典经验之间仍然存在差距,这可以通过对量子力学的解释来解决。我们不会在本研讨会上处理这个问题,因为我们将专注于描述观察到的量子系统和测量设备之间的相互作用。这样,我们将能够研究测量对观察到的系统的影响,调节相互作用的强度,并获得必要的测量统计数据。我们将在第 4 章中看到,弱测量背后的动机不仅仅是出于无望的量子爱好者的好奇心,而是为了强大的实验应用。
捕获离子是激发离子运动的弱力和电场的灵敏探测器。这里报告了与施加的弱外力相位一致的捕获离子晶体质心运动的测量结果。这些实验是在大约 100 个离子的二维捕获离子晶体上远离陷阱运动频率进行的,并确定了我们的协议的基本测量不精确度,不受与质心模式相关的噪声的影响。通过使用振荡自旋相关光偶极力将离子晶体运动与离子的内部自旋自由度耦合来检测晶体的驱动正弦位移。由此产生的诱导自旋进动与晶体的位移幅度成正比,并以近投影噪声限制的分辨率进行测量。在一次实验测定中检测到 49 pm 的位移,信噪比为 1,这比以前的相位不相干实验提高了一个数量级。该位移幅度比零点波动小 40 倍。在我们的重复率下,8 。4 pm / √