抽象的门级设计和电路模拟是构建复杂数字电路的基本过程。本文着重于两个通用数字逻辑门的设计和电路模拟。NAND和NOR GATES使用Cadence Virtuoso软件。研究利用了在每个逻辑门上进行的瞬态分析的多功能环境,以模拟对输入脉冲信号的输出响应。将模拟的结果绘制为瞬态图,以正确地可视化门操作。模拟结果表明,NAND和NOT门都经过了适当的操作,这通过其真实表得到了进一步验证。当两个输入信号都高时,NAND门仅产生低输出信号。当所有输入信号都较低时,NOR GATE才会产生一个很高的输出信号。通过严格的模拟和细致的分析,这项研究发现了这些逻辑门的动态行为,从而阐明了它们的功能和性能特征。1。简介
摘要:瞬态吸收(TA)光谱是确定激发态的能量和动力学的宝贵工具。当泵的强度足够高时,TA光谱包括通常所需的三阶响应和在现场幅度中较高顺序的响应。最近的工作表明,泵强度依赖性的TA测量值允许分开响应顺序,但尚未描述这些较高顺序中的信息内容。我们提供了一个一般框架来理解高阶TA光谱。我们扩展到高阶标准TA的基本过程:地面漂白剂(GSB),刺激发射(SE)和激发态吸收(ESA)。每个顺序介绍了两个新的过程:来自以前无法访问的高度激发态和低阶过程的负面的SE和ESA。我们在每个顺序上显示新的光谱和动态信息,并显示如何使用不同订单中信号的相对符号来识别哪些过程占主导地位。
过去半个世纪,计算机技术和电子技术的飞速发展彻底改变了我们的日常生活,为所有科学和工程分支提供了强大的新工具。水利工程实践和研究也不例外。例如,笔记本电脑每秒执行的浮点运算比四十年前推出的 Cray 1 超级计算机高出几个数量级,如今通常用于运行数值模型,以解决各种水利问题。此类模型结果的可信度取决于使用现场或实验室数据进行验证的程度。在大多数情况下,现场数据的收集非常昂贵且耗时,因此使用实验室数据是模型验证的更具吸引力的选择。此外,水利实验室中的物理模型提供了在受控条件下进行测试的可能性,并可以提供对基本过程的新见解,有助于加深对基础物理的理解。利用当今技术提供的工具,研究人员和从业人员能够分析复杂的流动问题和过程,这导致了液压实验室发展的两种趋势,即使用越来越复杂的仪器和设计用于研究特殊流动问题的创新实验设施。
摘要 新生儿脑缺氧缺血 (HI) 是新生儿死亡和残疾的主要原因,目前唯一的治疗方法是低温疗法。深入了解促进 HI 后组织修复的途径可能有助于开发更好的治疗方法。在这里,我们研究了乳酸受体 HCAR1 在小鼠新生儿 HI 后组织修复中的作用。我们发现与野生型小鼠相比,HCAR1 基因敲除小鼠的组织再生减少。此外,神经祖细胞和神经胶质细胞的增殖以及小胶质细胞活化受损。转录组分析显示,野生型小鼠脑室下区对 HI 的转录反应强烈,涉及约 7300 个基因。相比之下,HCAR1 基因敲除小鼠表现出适度的反应,涉及约 750 个基因。值得注意的是,在 HCAR1 基因敲除中,组织修复的基本过程(如细胞周期和先天免疫)失调。我们的数据表明 HCAR1 是促进 HI 后组织再生的途径的关键转录调节因子。
自然界中的许多现象由多个基本过程组成。如果我们可以定量地预测各个过程的所有速率常数,我们可以全面预测和理解各种现象。在这里,我们报告说,可以使用多共振热激活的延迟荧光(MR - TADF)定量预测所有相关的速率常数和量子收率,而无需进行实验。MR - TADF是出色的发射器,因为它的发射狭窄,高发光效率和化学稳定性,但它们具有一个缺点:慢速逆向间间交叉(RISC),从而导致效率滚动和降低设备寿命。在这里,我们显示了一种用于定量获得所有速率常数和量子收率的量子化学计算方法。这项研究揭示了一种改善RISC的策略,而不会损害其他重要因素:辐射衰减率常数,光致发光量子产量和发射宽度。我们的方法可以在广泛的研究场中应用,从而对包括激子的时间演变提供了全面的理解。
门控是细胞仪数据分析的一个基本和基本过程,因为它定义了感兴趣的细胞类型。当前,没有普遍接受的方法来代表和共享软件,出版物和存储库之间的门控策略。i建议使用质量总体系统与哥德尔数字的修改版本相结合,以唯一识别任何门控策略。主要人口系统首先用于识别双变量图上的大门;依次使用Gödel数来设置分层门控策略的序列。该过程结果是任何现有和将来的门控策略的独特识别剂。独特的识别剂具有,因为根据算术的基本定理,除一个自然数字以外的每个自然数字都是素数,也是质量数的产物,并且每个非质量数字都可以以一种方式将其纳入素数。此方法代表了迈向细胞术元数据算法的进一步步骤。
在全球范围内,数以百万计的人受到包括亨廷顿氏病(HD),肌萎缩性侧面硬化症(ALS),帕金森氏病(PD)和阿尔茨海默氏病(AD)的神经退行性疾病的影响。尽管已经将大量能源和财务资源投资于与疾病相关的研究中,但治疗方法的突破仍然难以捉摸。细胞的分解通常与神经退行性疾病的发作一起发生。但是,触发神经元丧失的机制尚不清楚。脂质过氧化是铁依赖性的,会引起一种特定的细胞死亡,称为长细毒性,并且有证据表明它参与了神经退行性疾病的致病性级联反应。但是,特定机制仍然不知道。本文重点介绍了基础铁凋亡和相应信号网络的基本过程。此外,它提供了有关当前关于在各种神经退行性条件下氟凋亡作用的研究的概述和讨论。
类器官是三维细胞培养物,它们源自自组装干细胞以及模仿真实器官的结构和功能特征。他们提供了在体外环境中研究器官发育和发病机理的基本过程的可能性,并且是动物模型的高度有希望的替代方法。挑战其完整性以确定致病因素对组织和救援实验的影响的方法,最近开发了允许检查药物作用的实验。许多人体组织的类器官已经可用,但是生产技术却稳定地完善和优化。在本期特刊中,我们旨在介绍一系列文章,这些文章引入了新的和描述器官成像领域的既定发展。文章应强调各种类型器官的技术的优点,应用和局限性,并提供有关产生最佳结果所需的技术修改的有用信息。这将使读者能够理解整个成像方式,并选择最适合预期研究的方法。
过去半个世纪,计算机技术和电子技术的飞速发展彻底改变了我们的日常生活,为所有科学和工程分支提供了强大的新工具。水利工程实践和研究也不例外。例如,笔记本电脑每秒执行的浮点运算比四十年前推出的 Cray 1 超级计算机高出几个数量级,如今通常用于运行数值模型,解决各种水利问题。此类模型结果的可信度取决于其使用现场或实验室数据进行验证的程度。在大多数情况下,现场数据的收集非常昂贵且耗时,这使得使用实验室数据成为模型验证的更具吸引力的选择。此外,水利实验室中的物理模型提供了在受控条件下进行测试的可能性,并可以提供对基本过程的新见解,有助于加深对基础物理的理解。利用当今技术提供的工具,研究人员和从业人员能够分析复杂的流动问题和过程,这导致了液压实验室发展的两种趋势,即使用越来越复杂的仪器和设计用于研究特殊流动问题的创新实验设施。
危险和风险分析 (H&RA) 团队识别出可能造成灾难性后果的危险事件。其中一种事件可能是容器液位下降,导致高压气体流向未达到该压力的下游设备。可以指定安全仪表功能 (SIF) 来降低此事件的风险。SIF 检测低液位并通过关闭出口截止阀来防止漏气。指定三个冗余液位变送器来检测低液位情况。基本过程控制系统使用其他液位设备来监视和控制容器液位。当三个液位变送器中的任意两个检测到低液位(三选二,2oo3)时,安全仪表系统 (SIS) 会关闭出口截止阀。如果一个液位变送器发生危险故障,SIF 仍可工作;但是,如果两个变送器发生危险故障,SIF 将无法关闭阀门,导致容器中的液位下降,并可能造成灾难性后果。