摘要 目的 钛 6 铝 4 钒 (Ti-6Al-4V) 合金具有良好的生物相容性、优异的机械性能和卓越的耐腐蚀性,常用于医疗和正畸目的,作为主动正畸治疗后的固定保持器。钛缺乏抗菌特性且具有生物惰性,这可能会影响此类材料在生物医学应用领域的使用。细菌粘附在正畸保持器表面是感染的常见第一步;接着是细菌定植,最后形成生物膜。一旦生物膜形成,它对药物和宿主免疫系统的防御机制具有很强的抵抗力,因此很难从正畸保持器中去除生物膜。本研究旨在测试氧化锌 (ZnO) 纳米颗粒涂层对 Ti-6Al-4V 正畸保持器上的抗菌作用。材料与方法采用电泳沉积法将粒径为10至30nm的ZnO纳米粒子涂覆在合金上。采用各种参数和表面特性测试来获得优化样品。对该样品进行微生物粘附光密度测试以检查变形链球菌、嗜酸乳杆菌和白色念珠菌的粘附。结果优化样品的ZnO浓度为5mg / L,施加电压为50 V,电极间距离为1 cm。与未涂层样品相比,ZnO涂层显著降低了微生物粘附,有效抑制了细菌生长。
摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。
首先,我要承认 Turrbal、Jagera 和 Yuggera 人民是我们今天开会的这片土地的传统所有者,并向他们的过去和现在的长者表示敬意。
受自然启发而设计高性能蛋白质材料的努力主要集中在改变自然发生的序列以赋予所需的功能,而从头设计则明显落后,需要非常规的创新方法。在这里,使用部分无序的弹性蛋白样多肽 (ELP) 作为初始构建块,这项工作表明,可以通过混合仿生设计加速蛋白质材料的从头工程,这项工作通过整合计算建模、深度神经网络和重组 DNA 技术实现了这一点。这种可推广的方法涉及整合一系列具有 𝜶 螺旋构象的从头设计序列,并将它们遗传编码为受生物启发的内在无序重复基序。新的 ELP 变体保持结构构象,并在体外表现出可调节的非热平衡超分子自组装和相行为。这项工作说明了预测的分子设计在结构和功能材料中的有效转化。所提出的方法可应用于广泛的部分无序生物大分子,并可能为发现新的结构蛋白铺平道路。
相反,即使在包含少数到几百个原子的可数纳米尺寸区域中,LSPR响应也在气相中观察到,对应于纳米簇(NC)(NC),直径低于几纳米。14–19这些发现促使研究基于量子理论计算构建理论框架,以增强我们对这些NC区域光学响应的理解。20–29关于LSPR光学响应在NC中的阈值大小,当在C 60有机底物上制造尺寸分散的单分散Ag NC时,Ag n NC的LSPR响应在9个原子左右出现。两光子光发射(2PPE)光谱阐明了LSPR响应,展示了依赖极化的增强光发性,包括波长依赖性和高扁平形Ag NC在石墨底物上的较大扁平形AG NC的电子弛豫过程。9,10,30但是,在大约50个原子和具有数百个原子的平坦原子的小型NC之间存在尺寸差距。因此,必须使用在底物上单分散的原子化Ag n NC评估光学性质,以揭示用于推进理论处理的过渡区域。在这项研究中,大型Ag NC(n = 70、85和100)在有机C 60底物上均匀地表面毫无成绩,并使用2PPE光谱法评估了其LSPR响应。我们将讨论与周围环境的相关性
本技术数据表 (TDS) 中提供的信息(包括产品的使用和应用建议)基于我们在本技术数据表发布之日对产品的了解和经验。产品有多种不同的应用,并且您的环境中的应用和工作条件也不同,这些是我们无法控制的。因此,KERAFOL ® 不对我们的产品是否适合您使用它们的生产流程和条件,以及预期的应用和结果负责。我们强烈建议您自行进行预先试验,以确认我们产品的适用性。所有规格如有变更,恕不另行通知。对于技术数据表中的信息或有关产品的其他书面或口头建议,我们不承担任何责任。如果 KERAFOL ® 仍需承担责任,无论基于何种法律依据,KERAFOL ® 的责任在任何情况下均不得超过有关交付的金额。所有 KERAFOL ® 产品均依照 KERAFOL ® 不时生效的销售与交付条款和条件进行销售,可根据要求提供该条款和条件的副本。
在Tecnalia,Basque研究与技术联盟(BTTA),西班牙b Netzsch Geratebau GmbH,SELB 95100,德国C Cooperativi替代能源研究中心(CIC Energigune),Basque Research and Technology Alliance(BRTA),01510 VITORIIS DEICIRE deitoriia甲虫(CSIC-UPV/EHU)20018 DONOSTIA-SAN SEBASTI´AN,西班牙和建筑和建筑材料研究所,德国Tu Darmstadt,Fentro f centro d de controso de M´Etodos Computaciartiones(CIMEC)(CIMEC),LINL-Conicet,Predio Condio。 “ Alberto Cassano博士”,3000 Santa Fe,阿根廷G实验室DeFlujometría(Flow),FRSF-Upn,Lavaise 610,3000 Santa Fe,Argentina H Graphenea,SA,SA,SA SEBASTIAN,20009年,西班牙Spain I Sphera I Sphera I Sphera I Sphera i Sphera srl,srl,dossobuono,dossobuono UPV/Ehu,Barrio Sarriena S/N,48940,Leioa,西班牙K Donostia International Physics Center(DIPC),Paseo Manuel de Lardizabal 4,20018 Donostia-san Sebasti´an,西班牙,西班牙
虽然碳本身看起来是一种非常简单的元素,但不可否认的事实是,碳材料从结构和应用的角度看都代表着大量的可能性。虽然我们可能认为碳“只是另一种元素”,但永远不要忘记,它通过不同杂化方式协调的特殊能力赋予了这种元素其他元素无法比拟的特性。进一步进入材料领域,在材料维度、表面和体积功能化或结构有序度等方面开辟了无数途径,仅举几个例子。如果将这些特性转化为特性和应用领域,结果同样令人印象深刻,新的应用和变体出现的频率越来越高。这导致过去十年发表了超过一百万篇科学论文,其中“碳”一词被用于标题、摘要或关键词中。当搜索范围缩小到“标题”字段时,结果下降到 318,000 多篇科学论文。这些数字是元素周期表中任何其他元素都无法比拟的,这清楚地表明碳材料的故事仍在不断发展和发展。这篇评论将概述碳基材料前沿部分在其 10 年历史中发表的作品,这些作品反映了过去十年碳材料领域取得的进步。
摘要:实体瘤是全球癌症相关死亡的主要原因,其特点是肿瘤生长迅速、局部和远处转移。癌症治疗失败主要与肿瘤微环境的复杂生物学有关。基于纳米粒子 (NPs) 的方法已显示出克服实体癌病理生理特征所造成的限制的潜力,从而能够开发用于癌症诊断和治疗的多功能系统,并有效抑制肿瘤生长。在不同类型的 NPs 中,基于二维石墨烯的纳米材料 (GBN) 因其出色的化学和物理特性、易于进行的表面多功能化、近红外 (NIR) 光吸收和可调节的生物相容性,代表了开发用于治疗实体瘤的治疗诊断工具的理想纳米平台。本文回顾了基于石墨烯、氧化石墨烯 (GO)、还原氧化石墨烯 (rGO) 和石墨烯量子点 (GQD) 的纳米系统合成的最新进展,用于开发用于光声成像引导的光热化疗、光热 (PTT) 和光动力疗法 (PDT) 的治疗诊断 NP,应用于实体肿瘤破坏。本文讨论了每类 GBN 使用这些纳米系统的优势,同时考虑到不同的化学性质和多功能化的可能性,以及生物分布和毒性方面,这些方面是将其转化为临床应用的关键挑战。