采用这种主要方法时,将基板放置在反应器中,并暴露于含有要沉积材料的热不稳定气体中。在反应器的高温(高达 1250 o C)下,基板表面的化学反应将气体分解为气态和固态成分。固态成分以非常薄且均匀的薄膜形式沉积在基板表面上,气态成分则被吸走。
当使用环氧树脂时,封装腔体与芯片基板电连接。在您使用的 IO 单元中,有一个基板连接可确保芯片基板接地。当使用导电环氧树脂时,这种材料可确保封装腔体也接地。当使用非导电环氧树脂时,封装腔体不与芯片基板电连接。在这种情况下,要将封装腔体接地,腔体连接是必需的。在这种情况下,腔体连接是使用一条从封装上的引脚到封装腔体的引线和另一条从芯片上的 VSS 引脚到封装腔体的引线来完成的。导电/非导电?
摘要 作为可穿戴电子设备的热防护基板,由嵌入相变材料和金属层的聚合物材料制成的功能性软复合材料对人体皮肤的热防护具有独特的能力。在此,我们开发了一个分析瞬态相变传热模型来研究带有热防护基板的可穿戴电子设备的热性能。该模型通过实验和有限元分析(FEA)进行了验证。系统全面地研究了基板结构尺寸和热源功率输入对温度管理效率的影响。结果表明,可穿戴电子设备的热管理目标是通过以下热防护机制实现的。金属薄膜通过重新配置热流方向有助于沿平面方向散热,而相变材料则吸收多余的热量。这些结果不仅将促进对包含热防护基板的可穿戴电子设备热性能的根本理解,而且还有助于可穿戴电子设备热防护基板的合理设计。
要求标题:高级打印电路板和电子基板关键部门:微电子背景:印刷电路板(PCB)和高级包装底物是较大的微电子生态系统中的重要组件,是电路电路和集成电路之间复杂互连的骨干的骨干(IC)。自世纪之交以来,美国PCB行业的全球市场份额急剧下降,国内能力大大落后于近亲对手。因此,由于高混合,低量的国内PCB制造能力的严重不足和设计复杂性的增加,美国国防工业基础(DIB)在履行微电子订单方面面临严重的积压。同时,对于下一代美国国防系统,陆上对先进的底物制造或设计的访问很少。这项增强的白皮书的呼吁重点介绍了与高级PCB和电子底物的制造,材料和可靠性研究有关的几项关键计划。制造能力扩展和投资优先级(MCEIP)寻求解决下面描述的一个或多个技术主题领域的解决方案。期望的目标:国防部的高级PCB和电子底物计划是在关键战略领域投资原型项目,以增强高混合,低量的国内能力。提议的解决方案必须至少是技术准备水平(TRL)6和/或制造准备水平(MRL)为5。增强的白皮书应在以下技术要求的一个或多个方面保持一致:
摘要:采用固相合成、研磨、压制和烧结工艺制备了含有堇青石、莫来石、SiO 2 玻璃和 SiO 2 -B 2 O 3 -Al 2 O 3 - BaO-ZrO 2 玻璃的玻璃陶瓷复合材料。使用加热显微镜、差示热分析、热重法、扫描电子显微镜、能量色散光谱、X 射线衍射分析、阻抗谱、透射法和时域光谱 (TDS) 检查了 Hz-MHz、GHz 和 THz 范围内的热行为、微观结构、成分和介电性能。获得的基板表现出 4.0-4.8 的低介电常数。自发形成的封闭孔隙取决于烧结条件,被认为是降低有效介电常数的一个因素。
摘要:改善脆性底物上纳米化薄膜的界面稳定性对于诸如微电子等技术应用至关重要,因为所谓的脆性 - 延性 - 延性 - 延性界面限制了其整体可靠性。通过调整薄膜特性,由于分层过程中的外部韧性机制,可以改善界面粘附。在这项工作中,在模型的脆性 - 凝胶界面上研究了膜微结构对界面粘附的影响,该模型由脆性玻璃底物上的纳米化cufim插头组成。因此,使用磁控溅射将110 nm薄的Cu纤维沉积在玻璃基板上。虽然在溅射过程中保持纤维厚度,残留应力和纹理的质地可比,但在沉积过程中和通过等温退火过程中,纤维微结构变化了,导致四个不同的cufifms产生了晶粒尺寸分布。然后使用应力的MO覆盖剂确定每个Cufim的界面粘附,这触发了直接自发扣的形状的Cufifm分解。每个薄膜的混合模式粘附能的范围从较大晶粒的膜的2.35 j/m 2到4.90 j/m 2的纤维,对于纳米晶粒量最高的薄膜。使用聚焦的离子束切割和通过共聚焦激光扫描显微镜对扣子进行额外研究,可以通过对扣的额外研究进行清晰的效果,以将其切换并量化固定在弯曲的薄膜中的弹性和塑性变形的量。关键字:薄膜粘附,脆性 - 延性界面,自发扣,纤维微观结构,纳米化的cufifms可以证明,具有较小晶粒的膜表现出在分层过程中吸收更高量的能量的可能性,这解释了它们较高的粘附能量。
Jeff 在半导体封装领域拥有超过 25 年的经验,在被 Applied Materials 收购后,他领导着 Tango 产品组。他最初在 Semitool 担任工艺工程师,专攻电镀和湿法清洗,从封装行业起步。Semitool 被 Applied Materials 收购后,他的职业生涯转型为产品管理,然后是业务管理,负责支持 Applied 封装部门的电镀和 PVD 系统。
芯片:向碳化硅过渡 引线键合:超越铝键合,转向铜键合或无引线键合方法。 基板:更高性能的陶瓷或金属绝缘体基板。 导热油脂:尽可能消除,尤其是直接冷却时 冷却:过渡到双面冷却。 芯片连接:从焊料(例如银烧结材料)过渡。 基板连接:在非常苛刻的条件下可能需要非焊料解决方案。 散热器
柔性聚合物基板是一种很有前途的方法,可以克服神经植入物的一个核心挑战:高通道密度下的复杂功能与生物环境中的长寿命相结合。这种方法的优点是可以缩小 Si 基芯片的尺寸,并在柔性基板上通过薄膜互连线连接的芯片之间分配任务。与单个但更大的芯片相比,这伴随着较低的弯曲刚度,以及技术系统在功能范围、基板尺寸和目标解剖结构方面的良好适应性。现在已经确定了如何将 ASIC 集成到机械兼容的 PI 基基板中,同时考虑到先前定义的要求。接下来的步骤是 (a) 测试系统的功能
图 2. (a) 在未改性(深灰色图)和改性(浅灰色图)玻璃基板上通过 TPP-DLW 制造的聚合物立方体的剪切力测量。在这两种情况下,测试的立方体的边长均为 10 µm。水平虚线表示将微结构从基板上移开所需的最大力。插图显示了在边长为 30 µm 的立方体上进行的力-位移实验的光学显微镜图像。力传感器是图像右侧的明亮梯形结构。在未改性(b)和改性(c)基板上制造的 TPP 微结构的事后 SEM 图像。只有在改性基板上制造的微结构上才能清楚地看到由于与力传感器接触而产生的塑性变形迹象。(b)和(c)中的比例尺为 5 µm。