■Intellectual property rights: Japanese application 2023-175606 (application 2023-10-10) Name of the invention: Methods for labeling inosine bases, detection methods for detecting inosine bases, sequencing methods for sequencing nucleic acids containing inosine bases, inosine base labeling agents, and kits JST Patent application support system (PC T): S2023-0543-N0 Name of the invention: A Novel Technique to Explore Adenosine Deamination via Inosine Chemical Labeling and Affinity Molecular Purification ■Name of public funding projects utilized: AMED Bridge Research Promotion Project Seeds A (Main) 2022基础研究B(总统)(总裁)2022-2024基础研究B(总统)(总统)2019-2021支持研究活动开始(总统)2018年挑战研究(开发)(共享)(共享)2024-2026
研究基于人类边界科学计划(HFSP)(RGP0025/2021),BBSRC(BB/V003984/1),日本科学与技术机构(JST)CREST(问题NO.:JPMJCR15O1),Sakigake,Sakigake(问题:JPMJPR20K3)。学术变化领域研究(学术研究支持基金会(高级基因组支持)(问题:22H04925),基础研究(C)(问题号:21K06284),这是在特殊促销研究(主题:21H04977),基础研究(A)(主题号:23H00365)的支持下进行的,皇家学会奖项(UF160222,RF/RF/ERE/221032,URF/R/R/R/221024同步)。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
Technology, 2021, 201: 108541.[19] Steinke K, Groo L, Sodano H A. Laser induced graphene for in situ ballistic impact damage and delamination detection in aramid fiber reinforced composites [J].Composites Science and Technology, 2021, 202: 108551.[20] 杜晓云 , 李金宝 , 杨斌 , 等 .芳纶树脂液浸渍协同冷压 光制备高强度间位芳纶纸的研究 [J].中国造纸 , 2024, 43(4): 120 - 129.Du X Y, Li J B, Yang B, et al.Study on preparing high strength meta - aramid paper by aramid resin solution impregnation combined with cold pressing[J].China Pulp & Paper, 2024, 43(4): 120 - 129.[21] 关振虹 , 李丹 , 宋金苓 , 等 .易染间位芳纶的制备及其 性能 [J].纺织学报 , 2023, 44(6): 28 - 32.Guan Z H, Li D, Song J L, et al.Preparation and properties of dyeable meta - aramid fiber[J].Journal of Textile Research, 2023, 44(6): 28 - 32.[22] 朱文豪 , 宋欢 , 丁娉 , 等 .沉析纤维长度对间位芳纶纸 性能的影响 [J].中国造纸 , 2024, 43(1): 109 - 115.
摘要:随着全球变暖和温室效应的加剧,全球对制冷的需求日益增加。但是,传统的制冷方法不仅消耗了很多能量,而且还会产生诸如Co 2和臭氧(O 3)之类的温室气体(O 3),这将导致温室效应的强化,从而导致恶性循环。迫切需要开发一种干净的冷却技术。被动的白天辐射冷却已被证明是一种有效的策略,是以辐射形式转移到冷外层空间的形式的有效策略,并实现冷却的目的而无需消耗能量或使用辅助设备。根据被动日间辐射冷却技术的原理,本文分析了白天辐射冷却膜和涂料的设计思想,并分析和阐述了辐射冷却材料的开发历史和最新研究进度。最后,结合当前在构建冷却和个人热管理方面的应用,该技术的未来开发方向已被验证。关键字:全球变暖;温室效应;白天辐射冷却;发展课程;建筑冷却;个人热管理
■知的財産権: ・2018-159028, DNA損傷剤のスクリーニング方法及びDNA損傷剤のスクリーニング用キット ・2019-164912, ポリ(カルバメート)-核酸医薬コンジュゲート、ポリ(カルバメート)核酸 医薬コンジュゲートの凝集粒子、及び凝集粒子の製造方法 ■活用した公的資金事業等の名称: ・科研費 基盤C, 2017-2019 ・科研費 基盤C, 2021-2023
6 天前 — jp/msdf/bukei/index.html。第 2 页。货号。规格(详情)。货号。货号。滚装船。编号。货号。名称。时间表。单位。数量。标准(根据函馆基本大米和食品标准并如下所示)。
09:00-09:50 Tadaki(国家传染病研究所)感染性病理学对Covid-19的贡献10:00-10:00-10:50 Yamazaki Akira(大阪大学)(大阪大学)细胞介导的免疫反应对SARS-COV2 11:00-11:00-11:00-11:00-11:50 ARASE NAO(OSAKA NAO)介绍了OSAKA NAO(OSAKA NAO),以下简13:00-13:50 Nishiura Hiroshi(京都大学)Covid -19的传染病流行病学194:00-14:50 Sato Yoshi(Tokyo)新颖的Coronavirus大学的演变15:00-15:00-15:50-15:50