1. 算盘(公元前 2500 年 - 公元前):这是一种手持设备,由串在框架中的杆上的珠子制成。杆对应于数字的位置,珠子对应于数字。2. 纳皮尔骨算盘(公元前 2500 年):这是由约翰·纳皮尔(1550 - 1617)发明的。它由带有适当标记的小杆组成。它是一种机械计算辅助工具,由九根这样的杆(称为骨)组成,每根代表 1 到 9 的数字。他还发明了对数,通过执行加法和减法可以进行除法和乘法。 3. 计算尺(1600 年)——威廉·奥特雷德(1575 - 660):他于 1622 年发明了计算尺,但于 1632 年公布了这一发明。计算尺由表示数字对数的标记规则组成,还允许进行指数、三角函数等计算。4. 帕斯卡机械计算器(1600 年)或数字轮计算器:布莱斯·帕斯卡(1623 -1664 年)于 1642 年发明了第一台加法机,称为 Pascaline。黄铜矩形盒使用八个可移动的刻度盘,以 10 为基数对八个数字进行加法和求和。它可以以前闻所未闻的速度执行所有四种算术运算。 5. 莱布尼茨机械乘法器(1600 年):1694 年,戈特弗里德·威廉·冯·莱布尼茨 (1646 年 -1716 年) 改进了帕斯卡林乘法器,发明了一种可以使用刻度盘和齿轮系统进行乘法的机器。
其符合性确保了满足基本要求并超越了节能基本要求所固有的最低质量水平。 15.1.基本要求 HE 0:限制能耗。建筑物的能耗将根据其所在地的气候区、建筑物的用途以及现有建筑物的干预范围而受到限制。能源消耗将主要通过使用可再生能源来满足。 15.2.基本要求 HE 1:控制能源需求的条件建筑物必须具有热封套,该热封套的特性能够限制一次能源需求,从而根据建筑物所在地的气候区、夏季和冬季状况、建筑物的用途以及现有建筑物的干预范围实现热舒适度。热包层各元素的特性取决于其所属的气候区,从而可以避免不同居住空间的热质量失衡。同样,内部隔断的特性将限制使用单元之间以及使用单元与建筑物公共区域之间的热传递。由于过程导致热性能或组成热包络的元件的使用寿命显著降低(例如冷凝)而产生的风险将受到限制。 15.3.基本要求 HE 2:热能装置的条件建筑物内的热能装置必须适合居住者实现热舒适度。该要求目前正在现行的《建筑热能设施法规》(RITE)中制定,其应用将在建筑项目中进行定义。 15.4.基本要求 HE 3:照明设施条件建筑物将配备适合其用户需求且节能的照明设施,并配有可根据区域实际占用情况调节其运行的控制系统以及在满足特定条件的区域优化自然光使用的调节系统。
1996 年由孟买和新德里 AICTE 批准,已被包括古吉拉特邦在内的大多数邦政府接受。古吉拉特邦技术考试委员会 (TEB) 从 1996-97 学年开始实施此修订后的教学大纲 (课程)。艾哈迈达巴德课程开发中心 (CDC) 于 2003 年修订并更新了此课程,TEB 实施了此课程。本书的第二版经过了全面修订、重命名和扩充,并努力编写了此修订教学大纲的手册。它肯定会对所有邦的所有学生和安全人员有用。就法定条款而言,第 7、27、28 和 29 章对于希望在印度建立行业的任何人来说最有用,尽管大多数章节也按主题列出。
I.在2024年6月3日至7日,针对东非地区数字整合计划(EA -RDIP,P176181)进行了项目实施支持任务(ISM)。作为该更广泛的地区项目的一部分,南苏丹共和国的混合动力(虚拟和面对面)任务于6月3日 - 7112023在南苏丹的朱巴举行。南苏丹的任务由Naomi 1-Lalewood(Tane Tean Leader,高级数字开发专家)领导,由Victor Kyalo(高级数字发展专家),Ariic David Reng(数字发展顾问),Michael Okuny(高级财务管理专家)和Ocheng Kenneth Kenneth Kaneth Kaunda Odek(高级生产专家)组成。Giacomo Assenza(网络安全专家)和Dereje Agonafir Hablewold(高级环保专家)和Jennifer Gui(南苏丹项目焦点,高级数字发展专家)实际上加入了任务。
Michael P. Fitz 既是电子通信教师,也是电子通信系统设计师。他曾担任加州大学洛杉矶分校 (UCLA)、俄亥俄州立大学和普渡大学的电气和计算机工程教授。Fitz 教授于 1995 年获得普渡大学的 D. D. Ewing 本科教学奖。Fitz 教授是 IEEE 通信学报的编辑委员会成员。Fitz 博士曾在多家公司担任数字通信系统工程师,目前是诺斯罗普·格鲁曼公司的高级通信系统工程师。在这些职位上,他设计、制造和测试了陆地移动和卫星通信应用的调制解调器。他因在时空调制解调器技术方面的贡献而获得了 2001 年 IEEE 通信协会 Leonard G. Abraham 通信系统领域论文奖。
简介我是Magine,您是美国水电坝的值班经理,该水力发电为美国消费者提供能源。主控制室中的一个监视器记录了故障,随后的错误消息表明,关键设备的运行接近其最大阈值,这可能会导致灾难性的控制损失并导致破坏性故障。控制室监视器上的更多错误读数可能会读取,但是您已经排练的应急培训事件不会解决这些类型的问题。您确定无法解决问题。应急响应方案之一是联系网络安全团队以评估问题。网络安全团队在网络监控和控制电厂系统上进行了诊断测试。在到达网络安全团队所需的时间里,对电厂系统进行数字扫描,并在控制室中向您报告,发生了灾难性的事件。司法部调查后来确定具有业余网络技能的非国家演员使用AI开发了恶意软件,这导致了
DGS ● 通过建立集中式电动汽车计划、标准化政策和程序、法律协议、采购和其他指导,协调州设施的电动汽车基础设施全州战略 ● 为一些电动汽车充电项目提供设计和施工项目管理 ● 收集州设施现有、计划中和正在进行的电动汽车充电基础设施的数据 ● 确定未来州电动汽车车队的潜在电动汽车站点 ● 通过马里兰州公共服务委员会 (PSC) 试点计划与公用事业公司协调全州电动汽车基础设施 ● 每年为州设施的电动汽车充电项目提供 100 万美元的资金(取决于预算)
基础模型是对大量数据进行预训练的大型模型。通常可以以最小的努力来适应各种下游任务。但是,由于基础模型通常是在从互联网中提出的图像或文本上进行预培训的,因此它们在植物表型等植物域中的性能受到质疑。此外,完全调整基础模型是耗时的,需要高计算能力。本文研究了植物表型设置和任务的基础模型的有效适应。我们对三个基础模型(MAE,Dino和Dinov2)进行了大量实验,对三个必需的植物表型任务:叶子计数,实例阶段和疾病分类。特别是,预先训练的骨干被冷冻,同时评估了两种不同的调整方法,即适配器调整(使用lora)和解码器调整。实验结果表明,基础模型可以充分地适应植物表型任务,从而产生与针对每个任务的最先进的模型(SOTA)模型相似的性能。尽管在不同任务上表现出很高的传递能力,但在某些情况下,精细调整的基础模型的表现比SOTA任务特定的模型稍差,这需要进一步研究。
❖PKI涉及受信任的第三方的参与,他们验证了希望通过签发数字证书的当事方的身份。❖数字证书 / PKI证书包含有关钥匙持有人,公共密钥,到期日期以及发行其发行的证书授权的签名的信息❖值得信赖的第三方,称为注册机构,同时验证了一个人或实体的认证,并将其授予另一个机构,以指示另一个机构,以指导另一个机构。 钥匙。❖此证书(以及其中包含的公共密钥)随后可用于证明身份并实现与其他方的安全交易。