反应材料 (RM) 是一类由金属、金属氧化物和/或聚合物组成的工程颗粒复合材料。这些复合材料在国防应用方面很有吸引力,因为它们的碎裂和能量释放特性或热机械行为可增加向目标的有效能量传递。了解和预测 RM 的热机械行为对于有效设计和应用这些材料至关重要。在这项工作中,我们制作了具有不同成分、孔隙率和粒度的铝和 Al/PTFE RM 样品,以产生不同的机械响应和能量释放。准静态压缩试验、Kolsky 杆压缩试验和高速冲击研究用于评估 RM 样品在应变率在 10 −3 s −1 和 10 5 s −1 之间的机械响应。开发并验证了一种广义参数化模型,用于预测具有不同成分、孔隙率和粒度的 RM 的准静态材料响应。Kolsky 棒样本的碎片分布和高速撞击研究用于评估现有的碎片模型,表明广义的 RM 碎片模型仍然难以捉摸。展示了最小能量状态碎片模型在预测动态碎片粒状复合材料的特征碎片尺寸中的应用,并讨论了其局限性。弹式量热法和通风量热法实验用于探索本质上是多相的 RM 燃烧特性。开发了一种相位兼容的吉布斯最小化自由能平衡求解器,以改进对 RM 反应的能量释放和平衡产物状态的预测,并使用弹式量热法测量进行了验证。关键词:反应材料、铝/PTFE 燃烧、颗粒复合材料、动态碎裂、多相平衡建模、Grady 碎裂模型
1 型神经纤维瘤病 (NF1) 是一种遗传性疾病,其特征是神经嵴细胞中良性和恶性肿瘤的生长。尽管进行了广泛的研究,但只有一种药物被批准用于治疗丛状神经纤维瘤,而且没有针对其他相关肿瘤的特定药物。最近的研究表明,针对细胞信号通路(Hippo、Janus 激酶/信号转导和转录激活因子以及丝裂原活化蛋白激酶)和微环境(神经细胞、巨噬细胞、肥大细胞和 T 细胞)是潜在的治疗方法。几项临床试验正在研究抑制特定激酶或靶向微环境中信号分子的药物。尽管取得了重大进展,但仍需要更有效的治疗方法。本文回顾了与 NF1 及其相关肿瘤相关的先前策略、正在进行的临床试验和基础研究的最新进展。从科学数据库和文献中收集的数据突出了新疗法的潜力,包括激酶抑制剂、
联合国教科文组织在变化中的世界中所扮演的角色,作者:雷内·马赫,《社会工作》,巴黎。……所谓的联合国教科文组织的业务行动,实际上是将人道主义思想付诸实践。欠发达国家与发达国家之间日益扩大的差距将逐渐缩小,而这只能通过大规模的教育来实现。首先需要培训新近获得独立的新兴国家的关键工作人员,并制定一项计划,帮助这些国家根据其他国家取得的成果,根据本国情况组织自己的教育体系。必须让所有人受益于科学成就,让所有人都能获得旨在改善生活条件的现代技术。过去几十年来,科学进步的迅猛发展加速了以技术为基础的世界文明的到来;但我们不能指望这种文明的精神价值是统一的。为了维护和促进基于质量的差异,文化标准的维护仍然是基本目标之一。联合国教科文组织致力于让更多人了解民族文化的独特和不可替代的价值。
摘要解决基金会行业环境挑战的动力导致循环经济相关的研究越来越多,更多样化。尽管对研究产生积极影响的期望提高,但作者并不总是具有与读者有效交流其研究的基本研究理念的工具,即知识将如何影响。我们建议作者简明地传达其知识产生(基本或应用)和影响途径(改革或变革性)的术语。改革性研究并不试图从根本上破坏或改变普遍的(或常规)生产系统,而变革性研究确实如此。我们为作者如何以适当的细节有效地传达其研究理念的建议提供了建议。
摘要:国家的研发(R&D)在经济的长期发展中起着重要作用。我们在2008 - 2014年间衡量了欧盟所有28个成员国的研发效率。超有效的数据包络分析(DEA)。我们将引用数量作为基础研究的输出,专利的数量作为应用研究的输出和以人力作为输入的研发支出。为了满足DEA假设并捕获研发特征,我们分析了一个均匀的国家样本,使用购买力平价来调整价格,并考虑投入和产出之间的时间滞后。我们发现,对于人均GDP较高的国家,一般研发的效率较高。这种关系也适用于基础研究和应用研究的专业效率。但是,应用研究表明其输出更容易区分和捕获更为强大。我们的发现在评估研究和政策制定中很重要。
1 农业与生物经济中心,未来环境研究所,昆士兰科技大学(QUT),布里斯班,QLD 4001,澳大利亚 2 ARC 自然与农业植物成功卓越中心,布里斯班,QLD 4001,澳大利亚 3 现地址:动物科学中心,昆士兰农业与食品创新联盟(QAAFI),昆士兰大学,布里斯班 QLD 4072 澳大利亚。 4 意大利国家新技术、能源和可持续经济发展局(ENEA),Casaccia Res Ctr,Via Anguillarese 301,00123 Roma 意大利。 5 基因组学技术,Corteva Agriscience,约翰斯顿,IA 50131,美国。 6 植物分子与细胞生物学研究所 (IBMCP)、高等科学研究委员会 (CSIC)、巴伦西亚理工大学、Camino de Vera s/n, 46022 巴伦西亚,西班牙。 7 米兰大学,Via Celoria 26, 20133 米兰,意大利。 8 林肯大学农业与生命科学学院葡萄酒食品与分子生物科学系,邮政信箱 85054,林肯 7647,坎特伯雷,新西兰 *对本手稿有同等贡献 摘要
1。教育部的绿色制备和功能材料应用主要实验室,湖北大学,武汉430062,中国2。固体润滑的国家主要实验室,兰州化学物理研究所,中国科学院,兰州730000,中国摘要,世界人口的爆炸性增长以及工业用水消耗的迅速增长,世界供水已陷入危机。淡水资源的短缺已成为一个全球问题,尤其是在干旱地区。本质上,许多生物可以在恶劣的条件下从雾水中收集水,这为我们提供了开发新功能性雾收集材料的灵感。大量的仿生特殊润湿合成表面是合成的,用于水雾收集。在这篇综述中,我们引入了一些自然界的水收集现象,概述了生物水收集的基本理论,并总结了生物水收集的六种机制:表面润湿性增加,水传输面积增加,长距离水的散热,水积累和储存,冷凝水,凝聚力促进和重力促进和重力驱动。然后,讨论了三种典型生物的水收集机制及其合成。及其功能,收集水效率,其仿生材料中的新发展,包括仙人掌,蜘蛛和沙漠甲虫。多种生物学的研究是受到nepenthes潮湿和光滑的蠕动的启发。彼此相互结合的各种生物水收集结构的出色特征远远优于其他单一合成表面。此外,植物雾收集材料的制备和应用的主要问题以及材料雾收集的未来发展趋势。
对 MIRAGE 综合征进行基础研究以开发治疗策略 MIRAGE 综合征是一种最近发现的遗传性疾病,其特点是六个主要特征,包括骨髓发育不良、感染、生长受限、肾上腺发育不全、生殖器表型和肠病。“MIRAGE”是这六个特征的首字母缩写。MIRAGE 综合征是由 SAMD9 突变引起的,该突变编码一种功能未知的蛋白质。MIRAGE 综合征是一种罕见/难治性疾病。日本仅发现 11 名患者。MIRAGE 综合征是一种危及生命的疾病,事实上,超过一半的患者在 2 岁前死亡。我们开展“对 MIRAGE 综合征进行基础研究以开发治疗策略”的研究旨在获得有关 MIRAGE 综合征的基本知识和见解,从而有助于开发治疗方法。成海聪(国立儿童保健与发育研究所分子内分泌科主任)建立了 MIRAGE 综合征的 HEK293 细胞模型,研究人员可以通过该模型重现患者细胞的生长受限情况。利用该模型,他测试了大约 1,500 种之前鉴定的小化合物,以寻找治疗 MIRAGE 综合征的潜在药物。然而,在初步筛选中尚未发现任何有效的化合物。目前,SAMD9 的功能在很大程度上尚不清楚。鉴定 SAMD9 的功能对于阐明 MIRAGE 综合征的分子机制至关重要。为此,成海聪和金仓耕介(东京医科大学分子病理学系助理教授)开始了两种基于细胞的实验。一种是蛋白质组学筛选。在该实验中,以上述 MIRAGE 综合征的 HEK293 细胞模型的细胞提取物为对象,用抗体偶联树脂捕获 SAMD9,并寻找与 SAMD9 结合的分子。已确定了几种候选分子,目前正在验证中。另一个是基因组学筛选。Narumi 和 Kanekura 使用基因编辑技术应用了一种新的基因敲除筛选方法,现在正试图确定负责 SAMD9 功能的生物学途径。基于细胞的方法对于研究 MIRAGE 综合征的分子和细胞水平发病机制是有效的。另一方面,这些方法不适合阐明器官和身体水平的发病机制。它需要对 MIRAGE 综合征患者进行深入表征,并重现该疾病的动物模型。为了对患者进行深入分析,Tomonobu Hasegawa(庆应义塾大学医学院儿科教授)与日本儿科内分泌学会和日本新生儿健康与发展学会一起开始了全国性的 MIRAGE 综合征调查。这项调查将有助于找到更多患者,并将有助于阐明该综合征的临床表现。此外,为了建立MIRAGE综合征的动物模型,木下昌人(京都大学农学研究科应用生物科学系助理教授)和谷口义人(预防医学和公共卫生系教授)正在培育基因工程的青鳉(Medaka)。石井智宏(庆应义塾大学医学院儿科助理教授)也在培育基因工程小鼠。今年,靶向载体的构建已经完成。这些实验将在明年建立突变动物系。
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
资助机会:美国能源部发布 5 亿美元公开招标,为物理科学基础研究提供种子投资 Lewis-Burke Associates LLC – 2024 年 10 月 11 日 美国能源部 (DOE) 科学办公室 (SC) 发布了年度公开招标,征集有助于解决美国能源部发现科学、能源、国家安全和环境任务的基础研究申请。与前几年类似,美国能源部已拨出 5 亿美元来资助本次公开招标下的活动,但这笔金额涵盖了多年的费用,并延长了现有奖项的资助。这意味着美国能源部在 2025 财年 (FY) 的新奖项招标中拥有约 1.5 亿美元。新奖项支持研究项目以及科学技术领域的研讨会和圆桌会议。此次资金征集,即科学办公室财政援助计划 2025 财年延续征集,开放时间为 2024 年 10 月 1 日至 2025 年 9 月 30 日。Lewis-Burke 鼓励申请人在财政年度早期申请,以充分利用资金。Lewis-Burke 还建议研究人员在提交完整申请之前向项目经理提交白皮书或预申请以获得反馈。这大大提高了奖项的成功率。能源部正在寻求那些未涵盖在整个财政年度发布的更具体的专题资助机会公告的研究领域的申请。根据社区的兴趣和需求,公开征集的奖项通常作为未来更大规模研究项目的种子资金。能源部计划为支持单个首席研究员 (PI) 或小团队的研究项目提供最多 350 个新奖项,平均每年 20 万美元至 100 万美元,并将使用部分资金来支持研讨会和圆桌会议。优先研究方向 所有八个主要科学办公室项目均参与公开招募。有关每个项目及其主要任务的更多信息,请参见下图。