阀门腐蚀通常被认为是阀门金属材料在化学或电化学环境作用下的损坏。由于“腐蚀”发生在金属与周围环境的自发反应中,因此预防腐蚀的重点是如何将金属与周围环境隔离或使用更多的非金属合成材料。阀门腐蚀是全球许多行业面临的巨大问题,尤其是化工、石油和天然气行业。由于阀门使用了不同的金属,这些金属在接触水分时会发生反应,但海水会加剧这种反应,随后阀门会因电偶腐蚀而发生泄漏和故障。有些地方比其他地方更容易腐蚀。这可能是因为它们离海边更近。但恶劣的环境并不是阀门开始腐蚀的必要条件;最常见的腐蚀类型实际上是电偶腐蚀。阀门泄漏和故障的代价是巨大的。阀门腐蚀的另一个重要原因是金属发生故障或因化学反应而受损。我们熟悉的腐蚀是影响金属的腐蚀;空气中存在氧气,再加上一点水分,就足以使钢制品开始腐蚀,大多数情况下,其他环境因素会加速腐蚀过程。阀门腐蚀的原理主要包括
腐蚀是一种普遍存在且经济负担巨大的现象,对各行各业都构成了持续挑战。随着对有效腐蚀抑制剂的研究不断深入,席夫碱因其多样的化学结构和独特的反应性而成为有希望的候选者。这篇小型综述全面概述了席夫碱在腐蚀抑制中的作用。本文从介绍腐蚀和腐蚀抑制剂的必要性开始,深入探讨了席夫碱的结构特征和合成方法。阐明了席夫碱的腐蚀抑制机制,强调了它们与金属表面的相互作用。重点介绍了该领域的最新进展,揭示了具有增强腐蚀抑制效率的新型席夫碱改性。这篇综述还介绍了用于研究席夫碱和金属表面相互作用的表征技术。此外,考虑到席夫碱与各种金属和环境的兼容性,探讨了席夫碱作为腐蚀抑制剂在不同行业中的实际应用。尽管前景光明,但本文讨论了席夫碱作为腐蚀抑制剂所面临的挑战和局限性,为未来的研究方向提供了见解。总之,这篇小型评论整合了当前的知识,简洁而全面地概述了席夫碱作为有效的腐蚀抑制剂,并概述了进一步探索这一动态领域的途径。
量子记忆是通过同步概率操作来实现大规模量子网络的关键技术。这样的网络对量子记忆施加了严格的要求,例如存储时间,检索效率,带宽和可扩展性。在温暖的原子蒸气平台上使用的梯形阶梯协议是有希望的候选人,将有效的高带宽操作与低噪声的按需检索相结合。然而,它们的存储时间受到运动诱导的脱粒的严重限制,这是由包含蒸气的原子的广泛速度分布引起的。在本文中,我们演示了速度选择性光泵,以提出这种腐蚀机制。这将增加蒸气记忆的可实现的内存存储时间。该技术也可以用于制备任意形状的吸收蛋白,例如准备原子频率梳吸收特征。
小檗碱是从天然植物黄连中提取的一种主要生物活性化合物,几十年来在中国被广泛认为具有抗糖尿病作用。其他类型的药理活性,如抗炎、抗菌、降血脂和抗癌作用也已被研究。在细胞水平上,这些药理活性大多是抑制作用。然而,小檗碱的细胞保护作用也在不同类型的细胞中观察到,如神经元、内皮细胞、成纤维细胞和 β 细胞。这种矛盾的结果可能与小檗碱在细胞内的特性和分布密切相关,可以用线粒体兴奋效应(一种特殊的兴奋效应)来机械地解释。在本文中,我们回顾了线粒体兴奋反应,并评估了小檗碱诱导的作用和可能涉及的信号通路。这些发现可能有助于小檗碱更好地在临床上应用,并表明在临床应用中应谨慎考虑一些针对线粒体的常规药物。
第63届实践研讨会“人工智能的基础”主办方:日本岩土工程学会关西支部(公益社团法人)岩土工程领域ICT应用推进研究委员会近年来,人工智能渗透到各个领域,越来越趋向实用化。然而现实情况是,很多人对于如何实现人工智能知之甚少。 因此,今年的实践研讨会主要针对那些从未研究过人工智能的人,以及那些在工作中负责人工智能但对其实现方式不太熟悉的人。它将包括帮助学生了解人工智能基础知识的讲座,以及使用人工智能对岩石标本进行分类的实践练习。通过练习,你将学习如何设置 Python 环境、如何运行它以及如何评估结果。本内容以推进岩土工程领域ICT应用研究委员会举办的AI研究会为基础。我们期待您的参与。 时间:2021 年 9 月 14 日(星期二)举办方式:关西大学 100 周年纪念馆特别会议室(根据新冠肺炎疫情形势,研讨会将通过 Zoom 在线举行)(大阪府吹田市山手町 3-3-35)交通方式:从阪急“关大前”站南口步行约 3 分钟详情请参阅 http://www.jgskb.jp/japanese/gyoujipdf/2021/20210914jitugi-seminar_kaijou.pdf 内容
DNA和RNA世界:1。在门德尔(Mendel)之后的几年中,研究了遗传物质的性质,从而意识到DNA是大多数生物中的遗传物质。2。脱氧核糖核酸(DNA)和核糖核酸(RNA)是活体系中发现的两种核酸。核酸是核苷酸的聚合物。3。DNA在大多数生物体中充当遗传物质,而RNA在某些病毒中充当遗传物质。4。RNA主要用作Messenger。RNA具有其他功能作为衔接子,结构或催化分子。 5。 多核苷酸链的结构(i)核苷酸具有三个部分,即 氮基,五糖糖(DNA中的脱氧核糖,RNA中的核糖)和磷酸基团。 (ii)氮碱是嘌呤,即 腺嘌呤,鸟嘌呤和嘧啶,即 胞嘧啶,尿嘧啶和胸腺嘧啶。 (iii)胞嘧啶在DNA和胸腺氨酸中都存在于DNA中。 尿嘧啶存在于胸腺嘧啶位置的RNA中。 (iv)氮基碱通过N-糖苷键连接到五糖糖,形成核苷,即 腺苷和鸟嘌呤等。 (v)当磷酸基团通过磷酸二酯键连接到核苷的5' - OH时,形成了相应的核苷酸。 (vi)两个核苷酸通过3' - > 5'磷酸二酯键连接以形成二核苷酸。 (vii)可以连接几个核苷酸以形成多核苷酸链。 (x)基碱对彼此互补。RNA具有其他功能作为衔接子,结构或催化分子。5。多核苷酸链的结构(i)核苷酸具有三个部分,即氮基,五糖糖(DNA中的脱氧核糖,RNA中的核糖)和磷酸基团。(ii)氮碱是嘌呤,即腺嘌呤,鸟嘌呤和嘧啶,即胞嘧啶,尿嘧啶和胸腺嘧啶。(iii)胞嘧啶在DNA和胸腺氨酸中都存在于DNA中。尿嘧啶存在于胸腺嘧啶位置的RNA中。(iv)氮基碱通过N-糖苷键连接到五糖糖,形成核苷,即腺苷和鸟嘌呤等。(v)当磷酸基团通过磷酸二酯键连接到核苷的5' - OH时,形成了相应的核苷酸。(vi)两个核苷酸通过3' - > 5'磷酸二酯键连接以形成二核苷酸。(vii)可以连接几个核苷酸以形成多核苷酸链。(x)基碱对彼此互补。(viii)多核苷酸链中的主链由于糖和磷酸盐而形成。(ix)与主链糖部分相关的氮基碱基。6。在RNA的情况下,每个核苷酸残基都有一个额外的OH组,核糖中的2位位于核糖中。另外,在胸腺氨酸(5-甲基尿嘧啶)的位置也发现了尿嘧啶。
基于前期开发的功能性高分子生物材料构建了一系列可注射水凝胶体系,包括基 于 “ thiol-ene ” 点击化学反应构建的超支化聚合物/巯基功能化细胞外基质材料交 联水凝胶体系【Acta Biomaterialia 2018, 75, 63; Biomater.Sci.2021, 9, 4139】、基于动态共价化学交联的自愈合可注射水凝胶体系【ACS Appl.Mater.Interfaces 2020, 12, 38918; Applied Materials Today 2021, 22, 100967】 以及基于离子交联和氢键作用的双网络水凝胶体系【Adv.Funct.Mater.2024, 2313322】。创建的超支化聚合物与巯基功能化透明质酸/硫酸软骨素水凝胶可结 合干细胞作为复合型组织修复材料,在创面愈合以及软骨修复方面展现出了显着 的组织再生效果。开发的基于席夫碱动态化学交联水凝胶具有良好的可注射性、 自愈合性以及组织粘附性,在生物3D 打印以及软组织粘附生物胶水方面展现出了 优越的应用前景。