AAS 有源天线系统 AAU 有源天线单元 AC 交流电 BCCH 广播控制信道 BH 忙时 BS 基站 BSC 基站控制器 BTS 基站收发站 CA 载波聚合 CATR 紧凑型天线测试范围 CCE 控制信道元素 CCH 公共信道 CCPCH 公共控制物理信道 CP 循环前缀 CPICH 公共导频信道 CS 电路交换 DC 直流 DL 下行链路 DPCH 专用物理信道 DUT 被测设备 EDGE 增强数据速率 GSM 演进 EIRP 等效全向辐射功率 EPRE 每个资源元素的发射功率 FDD 频分双工 FL 满载 FR1 频率范围 1(450 - 6 000 MHz),为 NR 定义 FR2 频率范围 2(24 250 - 52 600 MHz),为 NR 定义 GERAN GSM/EDGE 无线接入网 GP 保护期 GSM 全球移动通信系统 GUM 指南测量不确定度的表达
标题:机载 GSM 作者:Carlos Gonzaga López 主任:Ari Rantala (TAMK 应用科学大学) 日期:2008 年 12 月 15 日 摘要 多年来,航空业一直在寻找一种能够以可承受的价格在机上提供移动通信服务的技术。然而,由于存在许多技术障碍,已广为人知的 GSM 网络难以实现此目的。由于距离地面基站较远,机载移动终端辐射功率较高,可能对航空电子系统造成严重干扰。另一方面,由于 GSM 小区之间切换的频率很高,机载移动终端可能会因需要大量控制信号而降低地面系统的性能。为了解决上述问题,一种被称为车载GSM(GSMOB)的技术解决方案于2005年出现。机载GSMOB系统由一个低功率基站和一个在GSM工作波段发射噪声的相关单元组成。这样,飞机内的噪音水平就会高于地面基站的信号水平,从而阻止终端与这些站同步,并鼓励它们与机载基站同步。通过与机载站同步而不是与地面站同步,移动终端辐射的功率水平大大降低。以下最终项目旨在准备一份文件,概述 GSMOB 系统,该系统已开始由欧洲各大航空公司商业提供。此外,我们不仅处理了纯技术方面的问题,还处理了与现行法规和相关操作程序相关的问题。
机翼,在所有操作环境中提供出色的 SNR,同时允许机翼上方的气流不受干扰。在有效载荷舱中,包含 GNSS 接收器板的 gBox 紧紧绑在周围的保护泡沫中(图 2,A)。接收器以 20 Hz 的频率记录 GNSS 数据以对轨迹进行后处理,并在 GNSS 日志中以优于毫秒级的精度标记来自相机的反馈事件。与实时动态 (RTK) 校正系统相比,UX5 HP 使用后处理动态 (PPK) 校正轨迹和事件标记位置。这种选择是专门考虑到 UX5 HP 平台的高速和长距离特性而做出的,在整个飞行过程中不依赖无线电链路来获得准确的解决方案使系统更加可靠。作为额外的好处,PPK 计算的解决方案可以通过利用更精确的轨道数据和更复杂的平滑、过滤和插值算法比 RTK 更准确。此外,您可以减少在现场花费的时间,因为设置仅用于记录的基站不太复杂,并且当使用互联网基础数据源时,基站甚至不是必需的。在办公室花费的时间与仅 RTK 系统相同,因为对于基于 RTK 的 UAS,通常还需要进行后处理才能获得基站的精确位置。
在5G时代之前,硅基横向双扩散金属氧化物半导体(Si-LDMOS)是4G LTE射频功率放大器市场的主流方案,目前已基本成为主流,技术成熟度较高。传统Si-LDMOS在3.5GHz以下频率表现良好,但无法满足5G应用对更高频率的要求。砷化镓(GaAs)应用工作频率主要在8GHz以内,适用于5G基站的中低功率器件。在高功率射频应用中,氮化镓(GaN)优势明显,是5G宏站的必备材料。GaAs和GaN凭借更优的功率系统效率、性能和成本,有望取代硅成为功率开关技术的支柱。作为宽带隙(WBG)半导体材料,GaAs和GaN器件的效率均高于Si。 GaAs/GaN 器件正在取代 5G 基站、雷达和航空电子设备以及其他宽带应用中的 Si-LDMOS 器件。在未来的网络设计中,由于物理特性的限制,GaAs/GaN 和其他 WBG 材料将取代大多数现有的 Si-LDMOS 器件 [1]。一般来说,5G 基站将采用基于 GaAs/GaN 的 PA 来实现更高的频率,而 Si-LDMOS 仍将只是其中的一部分,用于较低频率
航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
近年来,5G手机服务已成为主流,移动设备的数据传输变得越来越快,为公众提供基础设施非常方便。与移动设备通信的基站安装在地面上并且不动。如果它们由于自然或人为的灾难而受到损坏,则需要时间,可能会导致大规模和长时间的沟通关闭。相比之下,卫星通信系统在地面上发射到太空站的卫星之间建立了通信。地球站可以安装在车辆中,该车站可以迅速移动到必要的位置,以迅速建立和恢复通讯。此外,即使在很难安装基站的海洋上,卫星通信系统也可以在整个区域内提供通信。因此,卫星通信系统已成为我们生活中必不可少的一部分,因为它的多个优势是一种交流手段。
• 使用 MNO 现有的频谱(AST SpaceMobile、Lynk 和 SpaceX/T-Mobile 都采用了这种方法)。这种方法具有向后兼容的优势(当今任何现有设备都能够与卫星通信),但它也带来了技术挑战,例如需要进行流量操纵才能使设备相信它正在与常规地面基站通信(多普勒和延迟补偿等)。性能水平也会受到影响,因为发射功率将受到干扰地面基站的风险的限制。频谱协调和监管是最大的障碍,因为卫星将使用分配给地面用途的频谱,需要根据各个国家的情况特别豁免规则。