¹概述了将可再生氢以氨的形式输出的拟议路线,以及固氮酶如何缩短这一多步骤过程。²目前使用通过水电解产生的 H₂ 生产 NH₃ 的模型,即通过哈伯-博施工艺。³使用固氮酶的工艺概述。纯化的 N₂ 原料通过太阳能固氮酶生物反应器转化为氨和氢。使用钒基膜分离 NH₃ 和 H₂,分别用于出口或本地使用。资料来源:Trevor D. Rapson 等人,“深入了解用于绿色氨生产的固氮酶生物电催化”,ChemSusChem,2020 年,第 13 卷,第 18 期
聚乙烯呋喃酸盐(PEF)是一种生物基塑料,类似于合成的聚对苯二甲酸酯(PET),该甲苯二甲酸酯(PET)是由平台化学2,5-羟基甲基甲基膜(HMF)产生的。围绕PEF的许多文献都集中在单位流程上,几乎没有考虑其可持续性和经济可行性。在这项全面的批判性审查中,从原料到聚合和上游应用程序的PEF生产过程的整个过程都得到了严格的研究。识别能够有效生产PEF的单个途径,同时考虑了经济生存能力和环境可持续性。对于每个单位操作,总结了最新的技术发展,并根据过程效率提出建议。从生命周期评估(LCA)和技术经济分析(TEA)中收集了发现的发现,促进了对PEF生产的环境可持续性和经济可行性的最大潜力的识别。
摘要:天然气燃烧时的 CO 2 排放因子明显低于石油和煤炭,被公认为迈向碳净零社会的重要过渡燃料。为满足热值要求(≥34.0 MJ/m 3 )并减少对运输管道的腐蚀,必须从原料天然气中去除 CO 2 和 H 2 S 等酸性气体。膜分离是一种很有前途的去除天然气中酸性气体的替代方法。本文旨在回顾用于从天然气中分离 H 2 S 的各种聚合物基膜和膜工艺的发展。总结和分析了用于从天然气中去除 H 2 S 的玻璃聚合物膜、橡胶聚合物膜、混合膜和膜接触器的研究进展。将各种膜的 H 2 S 分离性能绘制在一个图中,并提出了新的 H 2 S/CH 4 上限。深入讨论了 H 2 S 分离膜面临的挑战和未来的发展前景。
在解剖学和组织学研究中,已经使用了牛,猪和人心。使用了太平间和屠宰场的三十五颗心:a)18牛(成人); b)16人(胚胎,婴儿,成人); 1猪。进行解剖学,组织学和他的学术研究。心脏被固定在10%缓冲的福尔马林中,并在四微米切片中使用苏蓝氧基膜和Masson的三色染色技术进行了组织学。也将百分之十的福尔马林用作缓冲液,并实施了免疫his术染色(S100-神经丝)[20]。根据以前的技术部署了单个连续和螺旋心肌(图1)[1,9]。在支撑下,与连续和完整的心肌结束的结合被称为心脏支撑[1,17],它构成了一个聚会点,可以使心脏在太空中采用一组纤维的安排,像侧面呈扁平的rope一样,与双旋转型旋转,这是双重的型号。样品是从心脏支点与AV节点的关系中取的(图1)。
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
自由唾液酸储存障碍(FSASD)是由SLC17A5基因的病原体变异引起的,该基因编码了lyso- somal跨膜蛋白sialin。sialin的损失或缺乏效率会损害FSA从溶酶体中传输,导致细胞功能障碍和神经系统障碍,最严重的FSASD形式导致童年时期死亡。目前尚无FSASD的疗法。在这里,我们评估了针对创始人变体的CRISPR-CAS9介导的定向修复(HDR)和腺嘌呤基础编辑(ABE)SLC17A5 C.115C> t(P.Arg39cys)在人类皮肤上的效果。We observed min- imal correction of the pathogenic variant in HDR samples with a high frequency of undesired insertions/deletions (indels) and signi fi cant levels of correction for ABE-treated samples with no detectable indels, supporting previous work showing that CRISPR-Cas9-mediated ABE outperforms HDR.此外,ABE治疗纯合或复合杂合子SLC17A5 c.115c> t人类皮肤纤维细胞降低了FSA的显着减少,以支持疾病病理学的改善。将这种安倍策略转换为携带slc17a5 c.115c> t变体的小鼠胚胎纤维细胞概括了这些结果。我们的研究将基础编辑作为FSASD变体SLC17A5 c.115c> t的治疗方法的可行性,并突出了基础编辑在单基因疾病中的实用性,而单基膜蛋白功能受损。
摘要:近年来,由于清洁、绿色和可持续的电动汽车的出现,人们对电池电动汽车 (BEV) 和燃料电池电动汽车 (FCEV) 的需求巨大,它们可以替代传统的燃料驱动汽车。与 BEV 相比,FCEV 具有几个优势,例如成本更低、效率更高、操作简单,最重要的是能量密度更高。质子交换膜燃料电池 (PEMFC) 是 FCEV 中首选的燃料电池类型。过去几年,由于可再生能源水电解槽的诸多发展,绿色氢气产量大幅增加,低温质子交换膜燃料电池的需求量更大。燃料电池组件成本高(双极板、电催化剂和膜)、耐用性差、功率密度低,FCEV 的全球商业化仍然受到阻碍。幸运的是,由于纳米材料开发(非 PGM 电催化剂和非 Nafion 基膜)的重大进展,组件成本正在下降。尽管有这些发展,但在 PEMFC 的工作环境下,材料(膜、电催化剂和双极板)的降解是非常常见和自然的。质子交换膜 (PEM) 是 PEMFC 的核心组件之一,在分离两个电极(即阳极和阴极)、仅允许质子通过和限制燃料交叉方面起着关键作用。不幸的是,PEM 很容易降解,导致燃料交叉、不良反应和混合电位,从而降低 PEMFC 的功率和能量密度,导致行驶里程差和效率降低。膜变薄、针孔形成、聚合物主链分离和过氧化物自由基攻击是导致膜降解和影响 PEMFC 性能的一些因素。因此,对于目前提出的工作,我们的主要目标是确定 PEMFC 下原位和异位条件下的膜降解及其缓解方法。我们提出的工作的最终目标是实现用于电力应用的低温 PEMFC 的稳定且高质子导电膜。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。