科学与创新部,格兰特。 Ramon和Cajal RYC2019-0 Mike Lane奖学金免费拥有Gracia别墅,赠款/奖励号:CVG2 AFM-TEMELON TRAMPOLINE,赠款/奖励号:23648; EURONONOME委员会第三届加泰罗尼亚政府,赠款 /奖励号:2021 SGR机构或加泰罗尼亚研究与高级研究,赠款 /奖励编号:Engel2022;格兰特,格兰特。 IDIBELL_NEWSCIENCE计划-Neuropulse 2022;赠款/奖励:赠款/奖项:ID,ID,
Michael A. Helmrath,医学博士Leyla Esfandiari,辛辛那提辛辛那提儿童医院医学中心辛辛那提大学干细胞和类器官医学系生物医学工程系3333 Burnet Avenue,MLC 2023 2023 2851 2851 michael.helmrath@cchmc.org leyla.esfandiari@uc.edu 513.636.4200 513.556.1355
摘要:类风湿关节炎(RA)是一种慢性炎症性关节疾病,其特征是形成增生的pannus以及软骨和骨骼损伤。RA的发病机理是复杂的,涉及发炎滑膜中各种细胞之间的广泛相互作用,包括成纤维细胞样的滑膜细胞(FLS),巨噬细胞和T细胞等。在炎症条件下,这些细胞被激活,进一步增强炎症反应,血管生成并促进骨骼和软骨降解。非常需要RA的新型治疗方法,并且已经认为间充质基质细胞(MSC)是一种有希望的新再生和免疫调节治疗。在本文中,我们介绍了MSC与RA-FLSS以及巨噬细胞和T细胞之间的相互作用,并总结了研究MSC在临床前和临床RA研究中使用的研究。
可以特定于特定场景(或用例),但每个场景都可能需要一个新的制造过程。最终用户从一组简单的构建块中构建传感器的能力为更大的多功能性,设计灵活性和快速实现这些传感器提供了机会。离子液体(IL)是在环境温度下液体的有机盐,这些功能性溶剂作为柔性应变传感器的组成部分具有吸引力。1 - 3,5 - 7,9 - 15,26 - 29 ILS可以膨胀聚合物网络以形成离子液体凝胶(离子凝胶),11,30,31,可以与水养水凝胶具有许多相似性。7,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。 IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。 32,337,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。32,33
摘要:最近的研究表明,由于其免疫调节性和再生性质以及实验性动物模型中的有限的副作用,间充质干细胞(MSC)对于基于细胞的肺部或损伤肺的APY很重要。临床前研究表明,MSC对免疫细胞具有显着影响,免疫细胞通过调节其活性,增殖和功能,在多个肺部疾病的发病机理中起着重要作用。此外,MSC可以抑制肺中浸润的免疫细胞和有害的免疫反应,可用于治疗由结核病和SARS-COV-2等病毒感染引起的肺部疾病。此外,MSC是肺泡上皮细胞(例如2型(AT2)细胞)的来源。这些MSC-DE功能性AT2样细胞可用于治疗和减少严重的肺部疾病,包括急性肺损伤,哮喘,慢性阻塞性肺疾病(COPD)和动物模型中的肺纤维化。作为一种基于MSC的替代治疗,可用于MSC衍生的细胞外囊泡可用于再生中心。在此,我们从最近的临床和临床前研究中讨论了有关MSC在治疗某些常见且研究良好的肺部疾病方面的功能的关键研究结果。我们还讨论了基于MSC的肺部疾病的基础机制,以及最近在肺损伤/炎症的衰减中使用MSC的机制,并促进损伤后肺肺泡细胞再生。最后,我们描述了基于MSC的治疗在治疗主要肺部疾病(例如肺炎,COPD,哮喘和IDIO病原病原肺纤维化(IPF))中的作用。
摘要“茎”的概念结合了调节未分化原始细胞的典型的无限自我再生潜力的分子机制。这些细胞具有导航细胞周期,进出静态G0相的独特能力,并保持产生多种细胞表型的能力。干细胞作为具有非凡再生能力的未分化前体,在整个人体中表现出异质性和组织特异性分布。对各种组织中不同干细胞种群的识别和表征彻底改变了我们对组织稳态和再生的理解。从造血到神经和肌肉骨骼系统,组织特异性干细胞的存在强调了多细胞生物的复杂适应性。最近的研究表明,主要在骨髓和其他基质组织内,有多种非脊髓性干细胞(非HSC)以及造血干细胞(HSC)的群体。在这些非HSC中,一个罕见的子集具有多能特征。在体外和体内研究表明,这些假定的干细胞的显着分化潜力,包括各种名称,包括多功能成年祖细胞(MAPC),骨髓分离的成年成人多琳多诱导细胞(迈阿密),小血液干细胞(SBSC),很小的胚胎样细胞(vsels),非常小的干细胞(VSELS)和多重依赖(Muse)和多个依赖(Muse)。关键字干细胞,缪斯细胞,VSEL,SBSC,迈阿密细胞,MAPC,多能分配给这些原始干细胞种群的多种命名词可能来自不同的起源或不同的实验方法。本综述旨在提出对源自基质组织的多能/多能干细胞各种亚群的综合比较。通过分析与这些人群相关的隔离技术和表面标记表达,我们的目的是描述基质组织衍生的干细胞之间的相似性和区别。了解这些组织特异性干细胞的细微差别对于释放其治疗潜力和推进再生医学至关重要。干细胞研究的未来应优先考虑共享实验室环境中方法论和协作研究的标准化。这种方法可以减轻研究结果的变异性,并促进科学伙伴关系,以充分利用多能干细胞的治疗潜力。
总是至关重要的是要满足工业消费者的范围,更需要更坚固,负担得起和多功能的材料。因此,聚合物基质复合材料(双重和混合矩阵)已在多个填充器中流行,以满足这些需求。石墨烯纳米平台(GNP)和碳纤维(CF)由于其出色的特性(例如良好的机械,热和电气性能)而在这些纤维中流行。低密度聚乙烯(LDPE),聚苯乙烯(PS),GNP和CF是流行的,并且在包装,汽车和航空航天工业中广泛使用。但是,最好看看这些领域在过去几十年中如何发展。因此,考虑确定混合和复合材料的整体性能的内容,本综述着重于LDPE和PS作为矩阵和GNP和CF的比较。在过去的几十年中,筛选了文献。包括双螺钉挤出机产生的混合物和/或复合材料。从所有数据库中总共检索了1628个相关论文。根据审查,可以推断出在航空航天行业等领域需要进行更多的研究,以识别最佳内容。大多数分析表明,填充表面积,分散和内容等因素会影响整体混合物和复合材料在机械性能方面的性能,尤其是弹性模量和拉伸强度以及其他特性。EMS和TSH变化是根据其最佳含量计算的。©2024作者。根据审查,意识到,使用20 wt%,2和30 wt%,2和30 wt%,2和4 wt%,以及20和30 wt%的纤维是最常见的组合,可以分别为LDPE,PS,PS,GNP和CF提供最佳含量。总体而言,LDPE和PS在包装区域都很好,但是在汽车,航空航天等行业中,仍需要改进其机械性能。由于GNP和CF的优势,它们用于不同应用,例如电气设备,医疗工具和汽车车辆。但是,这些特性很容易受到界面粘附,分散和聚集的影响。许多研究人员已经搜索了这些参数,并分析了如何防止这些参数的负面影响。总而言之,这项审查将对研究人员和工业人员意识到碳基复合材料的最先进以及LDPE,PS,GNP和CF的发展。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
对于 ST 段抬高型心肌梗死 (STEMI) 患者,梗死扩大是死亡率和心力衰竭的预后决定因素[1]。梗死的最终大小取决于再灌注无法挽救的缺血区域和再灌注本身造成的损伤,即缺血-再灌注 (IR) 损伤 [2,3]。由于减少缺血性损伤的策略可能会改善 STEMI 患者的预后,因此有必要识别预后生物标志物并加强对缺血性损伤的病理生理机制的理解,以揭示 STEMI 的新治疗策略。心脏细胞外基质 (ECM) 的有害变化似乎与心肌缺血性损伤有关,这可能通过诱发炎症、造成微血管功能障碍和加剧心脏重塑来促进梗死面积扩大 [4]。在心肌梗死 (MI) 的急性期,临时 ECM 的形成促进免疫细胞浸润和成纤维细胞的激活 [5],而血管内壁的 ECM 则与冠状动脉微血管损伤和阻塞有关 [6]。在心肌梗死后心肌的后期,ECM 的积聚不仅会取代梗死区域的坏死心肌细胞,还会在边缘区和存活心肌中产生纤维化,导致心脏功能恶化 [7]。如果参与这些 ECM 变化的蛋白质溢出到循环系统,它们可能成为缺血性损伤的循环标志物。为了确定与缺血性损伤相关的生物标志物,我们对因 STEMI 入院患者血清样本中的一组与 ECM 变化相关的生物标志物进行了量化。我们选择了一组已知参与炎症、纤维化和 ECM 重塑的蛋白质,这些蛋白质与转化生长因子 β (TGF- β ) 的活性有关,并可用于适当的检测方法。选定的标志物是骨桥蛋白 [ 8 ]、骨膜蛋白 [ 9 ]、syndecan-1 [ 10 ]、syndecan-4 [ 11 ]、骨形态发生蛋白 (BMP)-7 [ 12 ] 和生长分化因子 (GDF)-15 [ 13 ]。由于 TGF- β 是梗死后炎症和纤维化 ECM 重塑的关键调节因子 [ 14 , 15 ],我们假设这些 ECM 相关蛋白可能与 MI 后的缺血性损伤程度和结果有关。事实上,在患有急性冠状动脉综合征和循环中 GDF-15 [ 16 ]、syndecan-1、骨膜蛋白和骨桥蛋白水平升高的患者中观察到了不良临床结果 [ 17 - 19 ],而在患有 MI 的患者中观察到了 syndecan-4 水平升高 [ 20 ]。然而,关于它们与心肌缺血损伤的关系的知识有限。缺血性损伤通过心脏磁共振 (CMR) 进行评估,包括梗死大小和左心室 (LV) 尺寸和功能,以及微血管阻塞 (MVO) 和心肌挽救指数 (MSI) 作为 IR 损伤的参数。因此,本研究的目的是探索 STEMI 后急性期和慢性期测量的选定生物标志物与 1) 通过 CMR 成像评估的心肌缺血损伤和心脏功能以及 2) 长期死亡率之间的潜在关联。
抽象背景间充质基质/干细胞(MSC)已被提议用于放射诱导的唾液腺损伤后唾液腺(SG)恢复。这项研究旨在确定MSC治疗在临床前研究中射线诱导的SG损伤和功能障碍的安全性和有效性。方法在2022年1月10日之前发表的放射诱导的唾液腺损伤后,系统地搜索了评估MSC治疗的临床前介入研究,以评估MSC治疗的效率和安全性。主要终点是在荟萃分析中评估的唾液流速(SFR)。研究方案已在Prospero(www.crd.ac.uk/prospero)上发布并注册,注册号CRD42021227336。结果总共包括16个临床前研究,以进行定性分析(858种实验动物)和13个荟萃分析(404种实验动物)。MSC源自骨髓(四个研究),脂肪组织(10项研究)和唾液腺组织(两项研究),并静脉内施用(三项研究),内部(11项研究)或皮下可施用(一项研究)(一项研究)。没有报道严重的不良事件。,对SFR的总体影响显着增加,标准平均差异(SMD)为6.99(95%CI:2.55–11.42)。研究报告了腺泡组织,血管区域和旁分泌因子的改善。结论总结,这项系统的综述和荟萃分析显示,在放疗后在临床前研究中,放疗后,MSC治疗对恢复SG的功能和再生SG组织具有显着影响,而没有严重的不良事件。MSC治疗在射线诱导的静态症的治疗中具有巨大的治疗潜力,但需要在人类中进行全面,随机的,随机的,临床试验,以确定其在临床环境中的疗效。
摘要:结构电池正在引起人们的关注,并且可以在设计无排放的轻型防御和运输系统中发挥重要作用,例如飞机,无人驾驶汽车,电动汽车,公共交通,垂直起飞和着陆(VTOL) - 城市空中交通。这种综合功能的方法有助于总体质量减少,高性能和增强的车辆宽敞。目前的工作着重于开发和表征多功能结构钠电池电池组件,即使用高强度 - 强度的结构电解质(SE),该结构电解质(SE)通过在基于薄薄的(氧化乙烯)基于基于的乙二醇(氧化乙烯)的复合材料电解质层之间制备。结构电解质的电化学和机械特性表现出多功能性能,拉伸强度为40.9 MPa,离子电导率为1.02×10 - 4 s cm-1 60°C时在60°C时在60°C下使用0至4.5 v的电极式插入。 (CFS)针对结构电解质,其高抗拉力强度为91.3 MPa。制造的结构电池CF || SE || NA提供的典型能量密度为23 WH kg -1,并执行500个周期,同时保持80%的容量直至225个周期。在这项初步工作中对钠结构电池结构进行的研究表明,钠离子在中间模型型碳纤维电极中的插入显示,显示了具有出色的循环稳定性和结构强度的多功能性能,并为当前结构电池设计提供了替代路径。关键字:结构性钠电池,结构能量存储,多功能材料,碳纤维电极,多功能功率复合材料