关于研讨会的肠上皮是一种坚固的自我更新组织,由有效的茎和祖细胞支持。在流行模型中,隐窝碱中的LGR5+细胞是唯一维持稳态再生的肠道干细胞(ISC)。我们已经确定了以FGFBP1表达为特征的新型上层crypt ISC,它不同于基部的LGR5+细胞,它们是多功能的,并且支持长期的组织自我更新。在这里,我们提出了一个修订后的组织再生模型,该模型将LGR5+干细胞模型与FGFBP1+ ISC的命运图研究对帐。我们还将讨论我们关于干细胞异质性的未发表研究。
植物研究所一直在开发用于森林资源清查的大型摄影系统。该系统的作用是取代大部分(但不是全部)基础工作,这些工作包括对样地物种组成进行估计、对树木变量(例如高度、直径和体积)进行测量以及对林分进行估计(例如蓄积、基部面积、体积以及按直径和体积等级对树木进行分布)。直到最近,该方法的开发主要集中在克服限制树木测量准确性和物种识别可靠性的技术问题上。这些问题的重大进展导致重点转向成本效益考虑和实施该方法的实际问题。本文概述了该方法最近在操作试验中遇到的问题,提供了一些生产成本结果,并指出了克服一些剩余问题的计划。
使用含有 pCAMBIA 1301 载体的农杆菌菌株 AglI 感染新鲜芦荟外植体,以验证 GUS 基因的瞬时表达。与农杆菌共培养后,在进行外植体 GUS 组织化学染色的外植体上观察到几个明显的蓝点(图 5)。该载体在 GUS 基因中有一个内含子,确保其仅在转化组织中活跃表达,消除了假阳性的可能性。通过 GUS 组织化学染色评估了不同芦荟外植体在不同物理参数下的再生潜力和转化效率。在组 I 和组 II 中分别发现瞬时表达率为 91.3% 和 28.6%。芦荟茎(芽基部)表现出最大的再生潜力
摘要 - 我们还使用其他方法来充电移动,这是如此昂贵。太阳能具有高效且经济的使用。有效的原则是,当光落在太阳能电池上时,在N型发射极和P型基底部产生电子孔对。生成的电子(从基部)和孔(从发射极中)扩散到交界处,并被电场扫除,从而产生。选择某些模块并将其处理为合适的规格。太阳能是由太阳中的核融合反应产生的。从太阳辐射的能量是紫外线,可见和红外辐射的混合物。该辐射到达地球时的强度为1361 W/m2。我们的项目意图是创建太阳能移动充电器。项目设计太阳能并以可充电电池形式存储。该系统具有双重作用,既可以作为保护案例,又可以作为太阳能手机的动力备份。
摘要。洞穴是众所周知的档案,可保留有关过去的有价值信息,与重建过去的气候和环境有关。我们从480厘米深的研究中采样了沉积物,并取消了16S核糖体核糖酸(RRNA)基因基因的元法编码分析,以补充岩性伐木,SECIMEN-TOLOGY,SEDIMEN-TOLOGY和OPTIMALIGHATION刺激性刺激的发光(OSL)数据。这些分析揭示了与各种水输入沿沿本的沉积条件。沉积物的OSL年龄放置在74.7±12.3至56±8 ka(基部至顶部)之间。然而,在洞穴的上部和下层中可能发生了最近的最后一次冰川最大(LGM)古流量。细菌的位置都随深度变化。考虑到嗜热细菌,我们只能从热硫弹簧,旧热弹簧或Sapropel沉积物的表面上假设它们的起源。
明显分为阳性和阴性;根据我们的观察,没有子叶表现出嵌合 GFP 荧光(图 4a-j)。在具有活性 GFP 的绿色发芽体细胞胚中,由于叶绿素自发荧光强,几乎观察不到 GFP 荧光;相反,在胚基部的愈伤组织中观察到 GFP 荧光(图 4d,i)。为了研究子叶体细胞胚中的嵌合性,使用 8-30 个子叶胚(来自 6 个品系的 139 个)进行了测序分析。来自品系#47-2 的一个子叶胚在一个体细胞胚中有两种修饰模式。然而,在其他品系中,突变模式在单个子叶胚中明显分开(图 4k)。接下来,通过分析 4 个品系(分别为 #42 - 2、#18、#31 - 2 和 #11)中各 10 个通过体细胞胚胎发生再生的幼苗,分析了突变模式的稳定性。
图1:Amye的双横断事件。(a)AMYE集成矢量(顶部)的示意图,旨在将插入(黄色)集成到基因组中,如转化基因组(底部)所示。在集成向量上,插入物侧面是两个同源臂,Amye -Front和Amye -Back(绿色)。(b)缺失同源性区域的示意图。在枯草芽孢杆菌基因组中,AMYE之后是LDH-LCTP操纵子(顶部)。在PBGTRP及其衍生物中,带注释的Amye-Back区域之后是LDH的153 bp片段,而缺少中间的227 bp序列(底部)。(c)两个可能的双重跨事件。在这两种情况下,交叉都按预期的是在上游氨基部区域发生的,但是质粒中的基因组序列丢失允许在下游杏仁区域进行两个可能的重组事件。次要事件导致含有核糖体结合位点和LDH的第一个215个核苷酸的基因组序列损失。
18补充图1。通过半对准读数的软剪切引入的偏差。显示了六个读取与包含A/T变体的参考序列的比对。Bold Black T和Red A分别表示参考和替代等位基因。软剪裁由罢工表示。无软剪切,三个读数将支持参考(t)和替代(a)等位基因,从而导致无偏变体等位基因频率(VAF)为3/6 = 0.5。(a)读取R3被软剪切,直到获得参考的连续五次匹配为止。剪辑后,只有两个读数支持备用等位基因(a),而三个读取支持参考等位基因(t),导致偏置2/5 = 0.4的偏置VAF。(b)FIXVAF剪辑所有读数均按五个基础读取,无论它们是否包含变体位点还是支持参考或替代等位基因。读取支持参考等位基因和备用等位基因的读取现在被五个基部夹住。在此示例中,FIXVAF将计算2/4 = 0.5的VAF,因此消除了偏差。
列中阶段缺乏翻译顺序,但具有方向顺序。nematic阶段已经在各种系统中发现,包括液晶,相关材料和超导体。在这里,我们报告了磁性列相,其中基部成分由磁性螺旋组成。我们使用谐振软X射线散射直接探测与磁性螺旋相关的阶参数,并找到具有复杂时空特征的两个不同的列型相。使用X射线相关光谱法,我们发现两个列型相之间的相边界附近,波动在多个不同的时间尺度上共存。我们的微磁模拟和密度功能理论计算表明,波动随着磁性螺旋的重新定位而发生的,表明自发对称性破裂和新的自由度的出现。我们的结果为表征外来阶段的框架提供了一个框架,可以扩展到广泛的物理系统。
植被结构的特征。扫描激光雷达的生态应用以前使用冠层高度的单维指数。开发了一种解释激光雷达波形的新三维方法,以表征森林冠层内植被和空隙的总体积及其空间组织。冠层物理结构的这些方面很少通过现场或远程方法进行测量。我们将这种方法应用于俄勒冈州喀斯喀特山脉西侧的道格拉斯冷杉/西部铁杉林的 21 个地块,这些地块的激光雷达测量和实地调查是一致的。我们能够根据四类冠层结构的体积预测生物量和叶面积指数。这些预测在很大范围内都是非渐近的,最高可达 1200 Mg ha' 的生物量和 12 的 LAI,方差分别可解释 90% 和 88%。。此外,我们能够准确估计其他林分结构属性,包括胸高直径的平均值和标准差、直径大于 100 厘米的树干数量,以及花旗松和西部铁杉基部面积的独立估计值。