1美国加利福尼亚大学伯克利分校,美国加利福尼亚州94720,美国2 SLAC国家加速器实验室,美国加利福尼亚州斯坦福大学,美国3国际材料纳米结构中心,国家材料科学研究所,1-1 namiki,namiki,tsukuba,tsukuba,tsukuba 305-0044,日本305-0044,日本40.材料材料,国立材料,0044.日本5分子铸造,劳伦斯·伯克利国家实验室,伯克利,加利福尼亚州94720,美国6材料科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国7化学科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州伯克利,加利福尼亚州94720,美国 *
异质集成中一种突出的方法是基于转移的组装,其涉及去除由不同批次和工序制成的外延层。[5] 但这种方法在高密度器件集成方面面临障碍。首先,传统的外延生长将外延层器件紧密结合到基板上。分离它们通常需要高功率激光或化学蚀刻剂,这可能会损坏基板和外延层。这种风险限制了器件性能和产量。[6] 此外,在转移和组装阶段,必须将不同的功能器件分割成微小的芯片。这对于将它们准确转移和组装到高密度器件阵列的目标表面或基板上至关重要。在这个芯片键合过程中,即使是轻微的错位也会破坏器件与其底层电路之间的连接。这些困难不仅会增加微型和微型发光二极管 (μLED) 显示器等产品的生产成本,而且在制造高密度垂直堆叠器件时也带来了重大挑战。这种复杂性对于生产高分辨率显示器尤其重要,例如增强现实(AR)或元宇宙设备以及异质集成电子产品中使用的显示器。
2 在 HMM-MAR MATLAB 工具箱和 glhmm Python 工具箱中,这由 'DirichletDiag'/'dirichlet_diag' 选项指定。3 𝐾= 6, 𝛿= 10 4 𝐾∈{3,6,9,12, 15},𝛿∈{10,100, 1000, 10000, 100000} 。有关详细信息,请参阅补充表 SI-3。
大脑计算界面(BCI)是一项导致神经疾病应用程序发展的技术。BCI建立了大脑与计算机系统之间的联系,主要集中于协助,增强或恢复人类的认知和感觉 - 运动功能。BCI技术使从人脑中获得脑电图(EEG)信号。这项研究集中于分析包括Wernicke和Broca领域在内的发音方面,以进行无声的语音识别。无声的语音界面(SSI)为依赖声信号的传统语音界面提供了一种替代方案。无声的语音是指在没有听觉和可理解的声学信号的情况下传达语音的过程。本研究的主要目的是提出用于音素分类的分类器模型。输入信号经过预处理,并使用传统方法(例如MEL频率CEPSTRUM系数(MFCC),MEL频率光谱系数(MFSC)和线性预测编码(LPC)进行特征提取。最佳功能的选择是基于对主题的分类精度,并使用集成堆栈分类器实现。集成的堆叠分类器优于其他传统分类器,在Karaone数据集中的思维和说话状态达到75%的平均准确性,在14个通道EEG EEG上的思维和说话状态的平均精度为84.2%和84.09%,用于IMIVENIDECENTECTIOM EEG(FEIS)。
配置交换机管理 CPU.......................................................................................................................................................................................................54 CPU 队列命令.....................................................................................................................................................................................................................................................................57 管理接口命令.....................................................................................................................................................................................................................................................................58 IPv6 管理命令..................................................................................................................................................................59 . . . . . . . . . . . . . . . 65 控制台端口访问命令 . . . . . . . . . . . . . . . . . . . . . .70 Telnet 命令 . . . . . . . . . . . . . . . . . . . . . . . .72 安全 Shell 命令 . . ...
Sugam Budhraja是新西兰奥克兰理工大学的博士生。他的背景是机器学习和软件开发。他的研究领域包括神经信息学,深度学习,自学学习和回声状态网络。Maryam Doborjeh获得了新西兰奥克兰理工大学的计算机科学博士学位。她目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的高级讲师。她的研究领域是神经信息学,尖峰神经网络,机器学习和大脑数据分析。巴尔卡兰·辛格(Balkaran Singh)是新西兰奥克兰理工大学的博士生。他的背景是计算机科学和应用统计。他的研究领域是在神经网络,持续学习,元学习和尖峰神经网络中的优化。塞缪尔·谭(Samuel Tan)是新加坡南南技术大学的博士生。他的背景是生物科学和统计。他的研究领域包括生物信息学,网络理论和邻里优化。Zohreh Doborjeh获得了博士学位。来自新西兰奥克兰技术大学的计算认知神经科学博士学位。她目前是新西兰奥克兰大学大脑研究中心的博士后研究员,也是新西兰威卡托大学心理学学院的讲师。她的研究领域是神经信息学,神经心理学,认知神经科学和人工智能。收到:2023年2月9日。埃德蒙德·莱(Edmund Lai)获得了西澳大利亚大学的电气工程博士学位。他目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的信息工程学教授。他的研究兴趣是数字信号处理,计算智能,多代理动力系统和优化。亚历山大·梅尔金(Alexander Merkin)在俄罗斯的社会和法医精神病学研究中心获得了精神病学博士学位。他目前是AUT大学中风与应用神经科学研究所的研究员,也是Aut University心理治疗与咨询系讲师。他的研究兴趣包括数字心理健康,人工智能,心理学,精神病学和认知神经科学。吉米·李(Jimmy Lee)获得了新加坡国立大学的基本医学学位。他是新加坡心理健康研究所的精神科医生和临床医生,也是南约技术大学Lee Kong Chian医学院的副教授。他的研究领域是精神病学,心理药理学,精神分裂症和基于AI的健康技术。Wilson Goh获得了英国伦敦帝国学院的生物信息学和计算系统生物学博士学位。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。 他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。尼古拉·卡萨博夫(Nikola Kasabov)获得了保加利亚索非亚技术大学的博士学位。他是新西兰奥克兰技术大学工程,计算和数学科学学院的Kedri的创始董事和知识工程教授。他在英国Ulster University,IICT保加利亚科学院和中国达利安大学担任教授职位。他的研究领域是计算智能,神经信息学,知识发现和尖峰神经网络,以及700多个出版物。修订:2023年9月18日。接受:2023年10月3日©作者2023。牛津大学出版社出版。这是根据Creative Commons归因非商业许可(https://creativecommons.org/licenses/by-nc/4.0/)发行的开放访问文章,该媒介在任何媒介中允许非商业重复使用,分发和复制,前提是原始工作被正确引用。有关商业重复使用,请联系journals.permissions@oup.com
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
通过将直接能量沉积(DED)和超声纳米晶体表面修饰(UNSM)相结合而开发了一种混合覆层技术。这是一个有效的过程,可以控制金属包装层内的机械性能,但是改善内部特性的范围很低。因此,在这项研究中,在300和600 O C加热时应用了UNSM过程,以提高该混合添加剂过程的有效性。为了验证该方法的特征,对加热时采用横截面特性的研究进行了研究。在300度的混合层覆盖可产生改善 - 比室温下的结果大40%。在600度时,杂种覆层在较大面积上的机械性能提高了近2倍。在这项研究中,分析了室温和高温杂交覆层过程的特征。提出的方法显示出高改进效果,是改善隔层层内部机械性能的有前途的方法。
我们承认与F. Zhang,T。Senthil,L。Levitov,L。Fu,Z。Dong和A. Patri的有用讨论。L.J.承认斯隆奖学金的支持。T.H.的工作得到了NSF Grant No的支持。DMR- 2225925。这项工作的设备制造得到了STC集成量子材料中心的支持,NSF Grant No。DMR-1231319。设备制造是在哈佛纳米级系统和MIT.NANO的哈佛中心进行的。一部分设备制造得到了USD(R&E)在合同号下的支持。FA8702-15-D-0001。K.W. 和T.T. 承认JSPS Kakenhi(赠款号20H00354、21H05233和23H02052)和日本Mext的世界首屈一指的国际研究中心计划(WPI)。 H.P. 确认NSF赠款号的支持。 PHY-1506284和AFOSR授予号。 FA9550-21-1-0216。 这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号的支持 DMR- 2128556*和佛罗里达州。K.W.和T.T.承认JSPS Kakenhi(赠款号20H00354、21H05233和23H02052)和日本Mext的世界首屈一指的国际研究中心计划(WPI)。H.P. 确认NSF赠款号的支持。 PHY-1506284和AFOSR授予号。 FA9550-21-1-0216。 这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号的支持 DMR- 2128556*和佛罗里达州。H.P.确认NSF赠款号的支持。PHY-1506284和AFOSR授予号。FA9550-21-1-0216。这项工作的一部分是在国家高磁场实验室进行的,该实验室得到了国家科学基金会合作协议号DMR- 2128556*和佛罗里达州。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'