鉴于 ZOOM 的潜在用途,我们很高兴地宣布,大学已于 2020 年 1 月初订阅了使用 ZOOM 的站点许可证。它允许所有教学同事无限制地安排会议/实时在线课程,每次会议/课程最多可容纳 300 名参与者。
抽象的片段主义最初是作为新的时间理论引入的。它得到了进一步的修订和讨论,并提出了原始见解的不同发展。In a celebrated paper, Jonathan Simon contends that frag- mentalism delivers a new realist account of the quantum state—which he calls conservative realism —according to which: (i) the quantum state is a complete description of a physical system, (ii) the quantum (superposition) state is grounded in its terms, and (iii) the superposition terms are themselves grounded in local goings-on about the system in question.我们将争辩说,碎片主义至少沿西蒙提出的线条并没有提供对量子状态的新的,令人满意的现实描述。这就提出了一个问题,即是否还有其他一些可行的量子碎片主义形式。
位于阿拉巴马州科奇斯县的一家铜矿。SXJ'eN 堆浸法铜电解能力为 40,000 磅/天。可开采的露天矿储量低剥采比。1,500 英亩专利土地上已获全面许可。开发投资超过 1500 万美元。氧化铜项目位于阿拉巴马州亚瓦派县巴格达附近,拥有 722 英亩专利土地和 2,400 英亩 BlM 采矿权。已探明和可能的露天矿储量为 4500 万吨,铜含量为 0.33%,另外还有 4000 万吨的潜在储量。已获许可,堆浸法和 SXJ'eN 工厂即将完工。硅藻土矿和空气分级厂正在运营中。位于艾奥瓦州图森东北 30 英里处,占地 3,120 英亩,属于未获专利的 BlM 采矿权。项目需要扩建以满足强劲需求。阿拉巴马州莫哈维县的 SXJ'eN 铜厂日产量为 12,000 磅。1955 年前未获专利的采矿权占地 154 英亩。堆浸和工厂完全获准运营。露天氧化物储备。
与传统的空气冷却相比,矿物油效率的提高可能简化设施设计,并提供一种节省成本的方法。尽管矿物油浸没式冷却技术提高了冷却效率并节省了成本,但它仍未得到广泛应用,原始设备制造商不愿危及现有空气冷却系统设备的销售。仅有关于直接浸没式冷却热性能的令人信服的物理特性对于数据中心运营商来说是不够的。关于矿物油浸没式冷却对信息技术 (IT) 设备在组件和底盘级别可靠性的影响,仍存在许多不确定性和担忧。本文首次尝试通过回顾 IT 设备材料(如聚氯乙烯 (PVC)、印刷电路板 (PCB) 和电容器)的物理和化学性质的变化来应对这一挑战,并描述材料的互连可靠性。矿物油性质的变化(如运动粘度和介电强度)也被视为重要因素,并进行了简要讨论。本文展示了热塑性材料的弹性、硬度、膨胀和蠕变等机械性能的变化。还讨论了材料和矿物油之间的化学反应随时间和温度的变化。作者收集的有关该主题的文献和可量化数据为本研究文件提供了主要基础。[DOI:10.1115/1.4042979]
1996 年 1 月 1 日之后发布的报告通常可通过美国能源部 (DOE) SciTech Connect 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ DOE 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 http://www.osti.gov/contact.html
摘要 - 同构加密(FHE)是一种加密技术,具有通过对加密数据启用计算来彻底改变数据隐私的潜力。最近,CKKS FHE方案变得非常流行,因为它可以处理实数。但是,CKKS计算尚未普遍存在,因为它在计算和内存方面都是资源密集的,并且比未加密数据的计算要慢多个数量级。最新的算法和硬件优化可加速CKKS计算是有希望的,但是由于昂贵的操作称为Boottrapping,CKKS计算继续表现不佳。虽然已经做出了几项努力来加速自举,但它仍然是主要的性能瓶颈。这种性能瓶颈的原因之一是,与计算Boottrapping算法的CKK的非自举一部分不同,是固有的顺序,并且在数据中显示了相互依存关系。为了应对这一挑战,在本文中,我们引入了使用混合方案切换方法的加速器。HEAP使用CKKS方案进行非引导步骤,但是在执行CKKS方案的自举步骤时,请切换到TFHE方案。通过从单个rlwe密文中提取系数来表示多个LWE密文,从而向TFHE方案转变为TFHE方案。我们将自举函数合并到盲骨操作中,并同时将盲的操作应用于所有LWE密文。堆中的方法是硬件的不可知论,可以映射到具有多个计算节点的任何系统。随后可行地进行引导的并行执行是可行的,因为不同的LWE密文之间没有数据依赖性。使用我们的方法,我们需要较小的自举键,从而从键的主内存中读取约18×少量数据。此外,我们在堆中介绍了各种硬件优化 - 从模块化算术级别到NTT和盲核数据PATAPATH优化。为了评估HEAP,我们在RTL中实现了堆,并将其映射到一个FPGA系统和八型FPGA系统。我们对自举操作的堆的全面评估显示为15。与Fab相比, 39×改进。 同样,对逻辑回归模型训练的堆的评估显示了14。 71×和11。 与Fab和Fab-2实现相比, 57×改进。 索引术语 - ckks,tfhe,方案切换,自举,FPGA加速39×改进。同样,对逻辑回归模型训练的堆的评估显示了14。71×和11。57×改进。索引术语 - ckks,tfhe,方案切换,自举,FPGA加速
我们要感谢以下为本研究提供宝贵信息的公司:ABB、Austin Energy、BC Hydro、Central Maloney、Eaton、Federal Pacific、Graybar Electric、Hawaii Energy、Howard Industries、Hydro Quebec、Kinectrics、Los Angeles Department of Water and Power、Metglas Inc.、Nashville Electric Service、National Electric Service、National Grid、National Rural Electric Cooperative Association、NEMA、Powersmiths International、Santee Cooper、Schneider Electric、Siemens Transformers Canada Inc. 和 Square D/Schneider Electric。我们非常感谢 16 家 BPA 客户公用事业公司提供有关其公用事业变压器采购的信息。这些组织包括:Clallam PUD、Clark PUD、Clearwater Power Co.、Consumers Power Inc.、Franklin PUD、Idaho Falls Power、Kootenai Electric Co-op、Lakeview Light and Power、Lower Valley Energy、Mason PUD No. 3、Nespelem Valley Electric Co-op、Ravalli Electric Co-op、Snohomish County PUD、Tacoma Power、Tillamook PUD 和 Vigilante Electric Co-op。我们还要感谢协助该项目的 BPA 和 WSU 能源计划工作人员,即 BPA 的 Debra Bristow 和 Keshmira McVey 以及 WSU 的 Karen Janowitz。