1。康复医学部Muhimbili国家医院P.O. Box 65000,坦桑尼亚达累斯萨拉姆。2。西开普大学物理治疗系,私人包X17贝尔维尔7535。摘要背景:全球观察到心脏手术的显着增加,由于术后并发症,由于延长的住院时间(LOS)仍然普遍存在。物理治疗前和心脏后手术可减少这些并发症和LOS,但是提到物理疗法的病例尚不清楚。 目的:该研究旨在描述四年内坦桑尼亚一家医院的心胸病房的患者的物理疗法的特征和术前和术后转诊。 方法:描述性,回顾性设计。 使用数据提取表捕获人口统计学,心脏病,ICU和医院LOS,术后并发症以及所有患者的物理疗法转诊数据≥18岁。 结果:进行了105次心脏手术。 患者的平均年龄为30.6岁(SD = 10.48),54.3%(n = 57/105)是男性。 进行的心脏手术从2010年的48.6%(n = 51/105)下降到2013年的10.5%(n = 11/105)。 心脏骤停(33%,n = 7/21),肺炎(19%,n = 4/21)和肺塌陷(4.8%,n = 1/21)是著名的术后术后综合。 ICU死亡率最高(72,7%,n = 8/11)。 在术前,仅1%(n = 1/105)的病例被转介,术后术后为77.7%(n = 80/103)进行理疗。 doi:https://dx.doi.org/10.4314/ahs.v23i2.37引用为:Makalla AR,Karachi F,Phillips JS。物理治疗前和心脏后手术可减少这些并发症和LOS,但是提到物理疗法的病例尚不清楚。目的:该研究旨在描述四年内坦桑尼亚一家医院的心胸病房的患者的物理疗法的特征和术前和术后转诊。方法:描述性,回顾性设计。使用数据提取表捕获人口统计学,心脏病,ICU和医院LOS,术后并发症以及所有患者的物理疗法转诊数据≥18岁。结果:进行了105次心脏手术。患者的平均年龄为30.6岁(SD = 10.48),54.3%(n = 57/105)是男性。进行的心脏手术从2010年的48.6%(n = 51/105)下降到2013年的10.5%(n = 11/105)。心脏骤停(33%,n = 7/21),肺炎(19%,n = 4/21)和肺塌陷(4.8%,n = 1/21)是著名的术后术后综合。ICU死亡率最高(72,7%,n = 8/11)。在术前,仅1%(n = 1/105)的病例被转介,术后术后为77.7%(n = 80/103)进行理疗。doi:https://dx.doi.org/10.4314/ahs.v23i2.37引用为:Makalla AR,Karachi F,Phillips JS。结论:每年减少心脏手术,但需要减少术后并发症。术前物理疗法转诊可能会减少心脏手术后肺炎和肺塌陷。关键字:配置文件;心脏手术;心脏病;住院;理疗转诊。东非的心脏手术:病例的特征和转诊到理疗。 AFRI Health Sci。 2023; 23(2):336-45。 https://dx.doi.org/10.4314/ahs.v23i2.37东非的心脏手术:病例的特征和转诊到理疗。AFRI Health Sci。2023; 23(2):336-45。 https://dx.doi.org/10.4314/ahs.v23i2.37
• 它具有高弹性模量和高抗拉强度,因此具有极强的耐磨、耐磨损和耐冲击性。 • 由于其高介电常数,它是极好的电绝缘体。 • 由于蓝宝石的热稳定性,当暴露于从低温到 2000C 以上的温度时,它不会失去任何机械和光学属性。 • 导热性大于其他光学材料和大多数电介质。 • 由于极端热循环,不会造成表面损坏或失透。 • 与其他光学材料不同,它在极高的温度下不会下垂或塌陷。 • 它具有很强的耐腐蚀性,并且比大多数其他光学和非光学硬质材料更耐腐蚀性化学品。 • 在高辐射系统中不会发生日晒。 • 卓越的光学传输范围从紫外线到中红外线。(见图 2)蓝宝石具有六边形/菱形结构,并且具有取决于晶体方向的属性(图 1)。蓝宝石衬底有 C、R、A 和 M 平面以及随机取向。随机取向最便宜,通常用于非关键光学或机械应用。
以及纳米多孔结构内的有效电荷和质量传输。1,2因此,它们已成为电力化学设备中各种应用的高度有前途的材料。1,3,4这些材料的性能受到结晶度和毛发性等因素的强烈影响。一种引人注目的合成技术是模板定向的化学蒸气沉积(CVD),通过将薄碳层形成在模板表面上,可以精确控制所得的模板碳(TC)的结构。5 - 7此外,这种方法还具有实现高结晶性和启用可伸缩性的能力。8,9先前的研究已成功地利用了具有高催化活性的纳米多孔Ni和Cu模板来制造具有出色结晶度的TC。10 - 12然而,由于金属模板的烧结温度较低,控制TC的纳米质性仍然具有挑战性,这导致CVD期间纳米结构塌陷。要克服这个问题,使用具有高热稳定性的替代温度,例如MGO 13和Al 2 O 3,14
2019 冠状病毒病 (COVID-19) 疫苗表现出了出色的安全性。最常见的短期副作用是注射部位反应、发烧、疲劳和头痛,而严重不良反应的报道很少 [1]。然而,自大规模接种疫苗以来,已报告了几种免疫介导反应(包括心肌炎和新发或复发性肾小球肾炎 [GN])[1]。据报道,COVID-19 疫苗还可诱导 T 细胞活化 [2]。在这方面,接种 COVID-19 疫苗后发生肾脏疾病可能与其对病毒信使 RNA (mRNA) 产生的 T 细胞介导的免疫反应有关,而这种免疫反应可引发足细胞损伤 [2]。在此,我们报告了一例局灶性节段性肾小球硬化 (FSGS) 病例,该病例在接种第一剂辉瑞-BioNTech COVID-19 疫苗后出现节段性小叶塌陷和足细胞增生,模仿 FSGS 的细胞病变。
1 Department of Petroleum and Gas Engineering, Federal University Otuoke, Federal University Otuoke, Bayelsa State, Nigeria *Corresponding Author: Engr (Dr) Ekeinde Evelyn Bose Department of Petroleum and Gas Engineering, Federal University Otuoke, Federal University Otuoke, Bayelsa State, Nigeria Article History Received: 24.11.2024 Accepted: 30.12.2024 Published: 02.01.2025摘要:通过岩石钻探的钻孔的特定不稳定,例如钻孔突破,钻孔塌陷和页岩肿胀,由于其对钻孔安全性和效率的不利影响,在钻井操作中是一个重大关注的问题。尽管对钻孔不稳定性进行了大量研究,但找到解决此问题的解决方案仍然难以捉摸。这篇综述的目的是从一般的身体不稳定原则的角度检查岩石中不稳定性的主要机制。分析特定不稳定性问题的关键标准是构建综合相图。在这种情况下,讨论了三种主要方法及其部分实施。第一种方法涉及在钻孔已经塌陷并旨在确定洞穴壁的最终位置的假设下构建相图。但是,这种方法提出了一些挑战。洞穴可能会导致严重的开球或打破问题,在洞穴过程中的不稳定以及同时建模流体样的多孔材料中的洞穴并发症,并通过井眼的敞开壁过滤旁边的流量过滤。第三种方法涉及分析相图以研究合规性触摸模式的结果。第二种方法需要开发相图,这些相图表征了被驱动的钻孔壁的机械和液压不稳定性。这些相图是特定的不稳定性标准,但是由于它们通常是非Quasi静态的,因此在跨各种故障机制上概括了困难,并且在发生故障后被忽略并实施了传播禁令。但是,这些相图和最终边界条件的崩溃通常会忽略主要的耗竭和原位阻抗,它们是至关重要的系统特定物理补充,可以增强经典的平衡方程模式。因此,这些因素的整合对于对井眼不稳定性的更全面理解至关重要。关键字:定向钻孔;具体的不稳定性;井眼突破;钻孔崩溃;页岩肿胀;页岩床上用品;岩性;原位应力;钻孔液;加强井眼。w troduction to w ellbore i nstability
封面照片:沙质海岸是一种流动地貌,极易受到侵蚀,海平面上升会导致沙丘流动性增加。中间图片描绘的是奈湾(塔斯马尼亚西南部)的海滩和沙丘,其当前的活跃侵蚀状态可能主要是对 20 世纪全球海平面再次上升的反应。然而,沙质海岸并不是唯一一种可能因海平面上升而加速侵蚀的沿海地貌类型。左侧图片显示了康奈利安湾(霍巴特)的粘土砾石半岩化第三纪沉积物的海岸线,由于海浪侵蚀,海岸线在过去几十年中已后退数米。海岸悬崖(右侧图片)是另一种地貌类型,即使在海平面稳定的情况下,它通常也会持续受到侵蚀,并且可能因海平面上升而加速岩石坠落和塌陷。在仅由半石化基岩组成的沿海悬崖上,这一点尤其明显,就像这里描绘的塔斯马尼亚悬崖一样。
图 2 抗 VEGF 药物诱发的血栓性微血管病 (TMA) 的特征性表现 AC. 贝伐单抗诱发的肾脏病变(AC. PAM 染色)。在肾小球毛细血管内,可见内皮下空间扩张(A. 箭头)。随着时间的推移,内皮下空间变宽(B. 箭头)并形成微动脉瘤(C. 箭头)。在狭窄的毛细血管腔周围扩张的内皮下空间内的肿胀物质(C. 箭头)凝固形成节段性玻璃变性。D. 抗 VEGF 药物诱发的肾小球 TMA 示意图。内皮损伤导致内皮下空间扩张,而原来的毛细血管管腔塌陷,导致形成充满蛋白质液体的微动脉瘤。随着时间推移,血浆水肿凝固,形成节段性玻璃样变性。虽然这些病变很独特,但当内皮细胞严重受损并伴有水肿性改变时,有时很难区分增宽的内皮下空间和扩张的毛细血管腔。
摘要:脊柱损伤,包括宫颈和胸骨骨折,仍然是一个主要的公共卫生问题。机器学习和深度学习技术的最新进步为改善脊柱损伤护理中的诊断和预后方法提供了令人兴奋的前景。本叙事综述系统地探讨了这些计算方法的实际实用性,重点是它们在成像技术中的应用,例如计算机断层扫描(CT)和磁共振成像(MRI),以及结构化的临床数据。包括39项研究,34项专注于诊断应用,主要使用深度学习来执行椎骨骨折识别,良性和恶性骨折之间的区分以及AO骨折分类等任务。其余五个是预后的,使用机器学习来分析参数,以预测椎骨塌陷和未来断裂风险等结果。本评论重点介绍了机器学习和深度学习在脊柱损伤护理中的潜在好处,尤其是它们在增强诊断能力,详细的断裂表征,风险评估和个性化治疗计划方面的作用。
封面照片:沙质海岸是一种流动地貌,极易受到侵蚀,海平面上升会导致沙丘流动性增加。中间图片描绘的是奈湾(塔斯马尼亚西南部)的海滩和沙丘,其当前的活跃侵蚀状态可能主要是对 20 世纪全球海平面再次上升的反应。然而,沙质海岸并不是唯一一种可能因海平面上升而加速侵蚀的沿海地貌类型。左侧图片显示了科内利安湾(霍巴特)的粘土砾石半岩化第三纪沉积物的海岸线,由于海浪侵蚀,海岸线在过去几十年中已后退数米。海岸悬崖(右侧图片)是另一种地貌类型,即使在海平面稳定的情况下,它通常也会持续受到侵蚀,并且可能因海平面上升而加速岩石坠落和塌陷。这在仅由半石化基岩组成的海岸悬崖上尤其明显,就像这里描绘的塔斯马尼亚悬崖一样。
生成对抗网络(GAN)是一类机器学习模型,它们使用对抗性训练来生成具有与培训样本相同(可能非常复杂的)统计数据的新样本。一种主要的训练失败,称为模式崩溃,涉及发电机未能重现目标概率分布中模式的全部多样性。在这里,我们提出了一个有效的GAN训练模型,该模型通过用输出空间中的颗粒集代替发电机神经网络来捕获学习动力学;颗粒由通用内核对某些宽神经网络和高维输入有效。我们简化模型的一般性使我们能够研究发生模式崩溃的条件。的确,改变发生器有效核的实验揭示了模式塌陷过渡,其形状可以通过频率原理与鉴别器的类型有关。此外,我们发现中间强度的梯度正则化可以通过发电机动力学的严重阻尼来最佳地产生收敛。因此,我们有效的GAN模型为理解和改善对抗性训练提供了可解释的物理框架。