依赖经验的突触可塑性的最引人注目的特征之一是它在学习和记忆中的作用。当我们体验新事件或从事新任务时,会激活特定的突触途径。重复激活这些途径会导致LTP,从而增强了突触更有效地传输信号的能力。这种突触增强有助于记忆巩固,从而使新学习的信息存储在大脑的神经回路中。例如,当一个人学会骑自行车或演奏乐器时,重复的练习会导致大脑突触网络的变化,从而使学习的行为更加自动和精致[3]。
突触可塑性,突触在响应活动中随着时间的推移而增强或削弱的能力,在学习,记忆和整体认知功能中起着至关重要的作用。这是神经系统适应性的基本机制。在神经退行性疾病的背景下,突触可塑性的破坏对认知能力下降和神经元功能障碍有显着贡献。了解这些机制提供了治疗疾病的潜在治疗途径,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病和肌萎缩性侧面硬化症(ALS)[1]。
发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。
通过OCT4,SOX2,KLF4和MYC(OSKM)的表达进行瞬时重编程是组织再生和恢复活力的一种治疗策略,但对其代谢需求知之甚少。在这里我们表明,小鼠的OSKM重编程会导致维生素B 12的全球耗竭和蛋氨酸饥饿的分子标志。补充维生素B 12提高了小鼠和培养细胞中重编程的效率,后者表明细胞中性作用。我们表明,表观遗传标记H3K36me3可防止启动子外转录的违法启动(隐性转录),对维生素B 12级别敏感,为B 12水平(H3K36甲基化,转录延伸性,转录延伸性和有效的重新编程)提供了链接的证据。维生素B 12补充剂还可以加速溃疡性结肠炎模型中的组织修复。我们得出的结论是,维生素B 12通过其在单碳代谢和表观遗传动力学中的关键作用提高了体内重编程和组织修复的效率。
对热塑性复合材料的需求不断增加,因为这些材料在热固性工具中具有许多优势,例如高韧性,较长的存储时间,易于修复和回收,以及具有热成型和热量焊接的能力。但是,使用液体复合成型技术制造热塑性复合零件(例如树脂转移成型,真空辅助树脂转移成型。。。 )在熔融加工的情况下通常很棘手,在熔体过程中,由于热塑性塑料的高融化粘度,因此应选择高温和压力以浸渍纤维增强。可以通过反应性处理来克服这些问题,而低粘度单或寡聚前体首先浸渍了纯净的预成型,而热塑性基质的聚合则发生在原位。本文绘制了关于连续纤维增强基于丙烯酸的反应性热塑性塑料制造特征的最新技术(例如聚合甲基丙烯酸酯(PMMA)(PMMA)越来越流行。技术的甲基丙烯酸酯单体的原位聚合技术,流变特性和聚合动力学的表征和建模以及一些与制造相关的问题(例如聚合收缩)进行了综述。还引入了连续钢筋复合材料和潜在工业应用的不同制造技术中使用反应性PMMA的特定特征。最后,提出了学术研究和工业发展的一些观点。
Sorbonne Universit'E,E,Piti的儿童和青少年精神病学系,E-SALP ˆ etri etri'eere医院,法国巴黎,法国的Institut National de la Sant'E Et De la Recherche M´Edicale,Inserm u a10大学e Paris-Saclay,Ecole Normale Sup´ iRieure Paris-Saclay,CNRS,Center Borelli,Gif-Sur-Yvette; EPS BARTH的精神病学系,法国儿童和青少年精神病学和心理治疗系的Eps Barth´El´emy Durand,大学医学中心,von-Siebold-STR。5, 37075 G ¨ ottingen, Germany u Department of Psychiatry and Neuroimaging Center, Technische Universit ¨ at Dresden, Dresden, Germany v Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charit ´ e Universit ¨ atsmedizin Berlin, Germany w School of Psychology and Global Brain Health Institute, Trinity College爱尔兰X都柏林X人口神经科学与精确医学中心(PONS),脑启发智能科学与技术研究所(ISTBI)(ISTBI),Fudan University,Fudan University,上海,Y,生理学和营养科学系多伦多多伦多的位于加拿大M5S3G3
利益冲突作者宣布没有利益冲突。作者贡献SB和GD为论文开发了思想和概念。SB进行了实验,数据分析并领导论文的撰写。两位作者都为草稿做出了巨大贡献,并获得了发表的最终批准。致谢我们感谢同事,尤其是Natasha Tigreros博士的评论和讨论,改善了该项目的方向。我们感谢亚利桑那大学的毕业生和专业学生会项目资助。数据可访问性数据和软件代码可在Dryad上找到:doi:10.5061/dryad.b8gtht7j6
“现在的商业生产的PHA是如今的高能源密集型,并且在很大程度上依赖有机原材料和清洁水,这与欧盟的目标冲突了循环,可持续的经济。当前的生产过程远离零排放中性碳策略,” Promicon政策简介的作者解释了。该方法发表在《研究思想和结果》杂志上。
1。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。 (2022)。 小胶质细胞状态和命名法:在其十字路口的领域。 Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。 2。 巴克莱(2024)。 免疫。 3。 Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。(2022)。小胶质细胞状态和命名法:在其十字路口的领域。Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。2。巴克莱(2024)。免疫。3。Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Deczkowska,A.(2018)。与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。4。lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。(2024)。SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。免疫57,349-363.E349。https://doi.org/10.1016/j.immuni.2024.01.008。5。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。(2024)。鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。nat Neurosci。10.1038/S41593-024-01620-8。6。Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T.(2023)。在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。支持6,665。10.1038/S4203-023-05027-27。of Scheper,S.,GE,J.Z.,G.,Ferreira,L.S.,Garceau,D.,Toomey,C.E.,Socolova,D.,Rueda-Carrasco,J.,Shin,Shin,Shin,Shin,S.-H.(2023)。特定于Andsnaptics的特定补充和切片,并在阿尔茨海默氏症小鼠模型中访问SPP1。新自然26,406-410.1038/S41593-023-01257-Z。8。Silvin,A.,Uderhardt,St.,St.,C。,来自Mesquita,St.,Yang,K.,Girls,L.,Mulder,K.,Eyal,D.,Liu,Z.,Bridlance,C。和Al。(2022)。Michroglia和神经退行性的分裂。免疫55,1448-1465。pm。https://doi.org/10.1016/j.immuni.2022.07.0 9。 van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N. (2019)。 大脑巨噬细胞的单细胞图集只有超越身份才能活着。 nat Neurosci 22,1021-1 10.1038/s41593-019-0393-4。 10。 测试,A。,Weiner,A。和Friends,I。 (2020)。 路径信号通路。 这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0https://doi.org/10.1016/j.immuni.2022.07.09。van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N.(2019)。大脑巨噬细胞的单细胞图集只有超越身份才能活着。nat Neurosci 22,1021-110.1038/s41593-019-0393-4。10。测试,A。,Weiner,A。和Friends,I。(2020)。路径信号通路。这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0
1 equipelabelliséeligue conte癌症“ EMT和癌细胞可塑性”,CNRS 5286,INSERM 1052,中心bérardonBérard,Lard,Lyon癌症研究中心,Claude Bernard Lyon Univers of Claude Bernard Lyon 1,69008 Lyon。 Anne-pierre.morel@lyon.unicancer.fr(A.-P.M.); maria.ouzounova@lyon.unicancer.fr(M.O.)2 LabEx DEVweCAN, Universit é de Lyon, 69008 Lyon, France 3 Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre L é on B é rard, 69008 Lyon, France 4 UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, 法国; aruni.senaratne@curie.fr 5 CNRS UMR3666,INSERM U1143,蜂窝和化学生物学,Curie Institut Curie,PSL Research Instrys,75005 Paris,法国巴黎 *通信 *通讯:Hadrien.deblander.deblander.deblander@kuleuven.be(H.D.B.B.); alain.puisieux@curie.fr(A.P。)