在 APL,我们通常将塑料封装微电路 (PEM) 这一术语与商用现货 (COTS) 设备联系起来,但 PEM 具有塑料封装。请注意,合格制造商清单 (QML) 上可以找到少量 PEM,因此不能归类为 COTS。就本文而言,PEM 可以是微电路、半导体、无源元件或其他。反过来,COTS 设备是任何商业加工的组件。从历史上看,由于 PEM 具有商业含义,因此从未被认为适合航天应用。然而,随着军用级密封元件供应量的减少,PEM 已成为必需品。APL 决定使用 PEM 是基于内部和外部因素。在内部,有
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多个制造商和技术的 92 个商业样品,其中一些样品已有 28 年历史。假设是,如果旧部件在 20 或 30 年不受控制的长期休眠存储后没有退化,那么目前性能优越得多的产品将在类似条件下存活类似的时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现腐蚀。无论年龄如何,C 模式扫描声学显微镜都显示大多数部件都有分层区域,这表明该技术可能不是筛选塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,氧等离子蚀刻被发现是一种对塑料封装微电路进行破坏性物理分析的非常有效的方法。(关键词:塑料封装微电路、海军航空、长期休眠存储。)
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多个制造商和技术的 92 个商业样品,其中一些样品已有 28 年历史。假设是,如果旧部件在 20 或 30 年不受控制的长期休眠存储后没有退化,那么目前性能优越得多的产品将在类似条件下存活类似的时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现腐蚀。无论年龄如何,C 模式扫描声学显微镜都显示大多数部件都有分层区域,这表明该技术可能不是筛选塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,氧等离子蚀刻被发现是一种对塑料封装微电路进行破坏性物理分析的非常有效的方法。(关键词:塑料封装微电路、海军航空、长期休眠存储。)
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多家制造商和采用多家技术的 92 个商用样品,一些样品已有 28 年历史。假设是,如果旧部件在经过 20 或 30 年不受控制的长期休眠存储后没有性能下降,那么目前性能优越得多的产品将在类似条件下存活类似时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现了腐蚀。无论使用年限如何,C 型扫描声学显微镜检查都发现大多数部件都有分层区域,这表明该技术可能不是筛查塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,发现氧等离子蚀刻是对塑料封装微电路进行破坏性物理分析的一种非常有效的方法。 (关键词:塑料封装微电路、海军航空、长期休眠存储。)
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多家制造商和采用多家技术的 92 个商用样品,一些样品已有 28 年历史。假设是,如果旧部件在经过 20 或 30 年不受控制的长期休眠存储后没有性能下降,那么目前性能优越得多的产品将在类似条件下存活类似时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现了腐蚀。无论使用年限如何,C 型扫描声学显微镜检查都发现大多数部件都有分层区域,这表明该技术可能不是筛查塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,发现氧等离子蚀刻是对塑料封装微电路进行破坏性物理分析的一种非常有效的方法。 (关键词:塑料封装微电路、海军航空、长期休眠存储。)
PATRIOT(相控阵跟踪拦截目标)系统在开始时没有使用任何 PEM,因为高运行率和备件及导弹的长期储存需要较高的平均故障间隔时间 (MTBF)。增长计划和采购精简(即成本)要求“重新审视”PEM 的使用。目前的低运行率允许将 PEM 整合到地面设备中,但由于长时间处于休眠状态且运行时间短,因此无法整合到导弹中。目前,PATRIOT 系统部署在从炎热潮湿到凉爽潮湿的各种环境中。由于 PATRIOT 系统使用外部空气来冷却设备,因此 PEM 会“呼吸”而 HSM 不会“呼吸”这一事实对于操作和存储环境来说是一个问题,尤其是因为缺乏普通、干包装和氮气存储的 PEM 以及组件上的保形涂层 PEM 的存储数据。随着我们进入 21 世纪,可以预见 PEM 的使用将会增加,届时性能要求而不是技术数据包 (TDP) 将决定最终项目。
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多家制造商和采用多家技术的 92 个商用样品,一些样品已有 28 年历史。假设是,如果旧部件在经过 20 或 30 年不受控制的长期休眠存储后没有性能下降,那么目前性能优越得多的产品将在类似条件下存活类似时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现了腐蚀。无论使用年限如何,C 型扫描声学显微镜检查都发现大多数部件都有分层区域,这表明该技术可能不是筛查塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,发现氧等离子蚀刻是对塑料封装微电路进行破坏性物理分析的一种非常有效的方法。 (关键词:塑料封装微电路、海军航空、长期休眠存储。)
最常用的塑料材料是环氧基树脂,制造商根据其特性以及在测试和可靠性鉴定下的表现,使用多种配方。一个重要特性是离子纯度,这对设备可靠性很重要。添加剂吸气剂用于去除移动离子并提供高抗拉强度以消除爆米花。制造商根据多种特性对环氧模塑料 (EMC) 进行评级和选择。尽管不同制造商的目标通常相同(高设备/封装可靠性和性能),但由于芯片设计、半导体工艺、组装设备、可靠性测试和鉴定方法及结果各不相同,因此使用的 EMC 通常不同。
1) PEM 不适用于某些应用。在使用 PEM 之前,应对每种应用进行分析。特定的 PEM 环境问题如下:a) 排气 • 排气材料会降低传感器的性能 • NASA 排气规范: - 最大总质量损失 (TML) 为 1% - 最大收集挥发性可冷凝材料 (CVCM) 为 0.1% • 使用 NASA 发布的数据库;NASA 参考出版物 1124,修订版 3,“用于选择航天器材料的排气数据” • 环氧酚醛树脂作为一个整体通常符合 NASA 排气要求,但各种成型化合物配方含有专有添加剂,应进行检查。b) 温度限制 • PEM 的工作温度范围通常较窄(商用设备为 0°C 至 70°C)。操作或存储时的温度限制可能会成为问题。 • 当军用温度范围(-55°C 至 125°C)的部件不可用时,请选择工业温度范围(-40°C 至 85°C)的部件,因为大多数供应商都提供此范围内的部件。 • 使用供应商的数据或实际测试数据来确定部件在超出制造商指定的工作温度范围的扩展温度下满足性能参数的能力。 c) 热循环 • 热循环会引起周期性机械应力,最终导致模塑料分层和开裂。 从而产生快速水分和化学物质侵入的途径。 d) 辐射 • 宇宙和被困
用于太空任务的电子设备面临着独特的条件和挑战——专用集成电路 (IC) 封装可以帮助缓解其中的一些挑战。我们 TI 历来首先开发用于商业(非太空)用途的设备;只有在塑料封装中验证后,工程团队才开始进行陶瓷设计。但陶瓷封装通常与塑料封装不兼容,这需要开发新的测试和特性硬件,并使陶瓷封装测试解决方案符合大规模生产的要求。这些工作给太空硬件设计师带来了问题,因为他们要么必须等待陶瓷封装设备的创建才能开始构建原型,要么从塑料封装 IC 开始构建原型,然后在陶瓷样品可用时重新设计和重新制造电路板。